
Asymmetric DRAM Synthesis for Heterogeneous Chip
Multiprocessors in 3D-Stacked Architecture

Minje Jun, Myoung-Jin Kim, and Eui-Young Chung
School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea.

{jjuninho, mjkim86, eychung}@yonsei.ac.kr

Abstract—Various computational requirements of real-world appli-
cations have leveraged moving to heterogeneous chip multiprocessors
(CMPs) from homogeneous ones. In the meantime, three-dimensional
integration of DRAMs and processors using Through Silicon Vias (TSVs)
has emerged as the most viable solution for breaking the memory wall
in CMP environment by bringing much higher memory bandwidth
compared to current PCB level processor-DRAM integration. However,
most researches on 3D-stacked DRAM have focused on increasing the
memory bandwidth to improve the overall throughput of a system, even
though the memory access requirements of real-world applications are
various just as the computational requirements. To tackle this problem,
we propose an asymmetric 3D-stacked DRAM architecture where the
DRAM die is divided into multiple segments and the segments are
optimized for different memory requirements. Also, since the optimal
architecture of the DRAM can be different for different heterogeneous
CMPs, we propose an automatic synthesis method for the asymmetric
3D-stacked DRAM architecture. The experimental results show that the
area-power-product is reduced by 65.1% on average compared to the
conventional architectures for the four realistic benchmarks and many
of their derivatives.

I. INTRODUCTION

Chip multiprocessor (CMP) has emerged as the most viable
solution to meet the increasing demand for performance within a
tight power budget. In fact, CMPs are already prevalent nowadays in
various market entries, from servers to smartphones. In CMP, it is
expected that the throughput scales up as more cores are integrated
provided that tasks are properly assigned to the cores. However,
the throughput scaling of CMP is upper-bounded by the theoretical
limitation of applications’ parallelism. Moreover, there are many
practical issues which further limit the performance scaling of CMP,
such as memory bottleneck also known as memory wall.

In order to break the memory wall, three-dimensional integration
of DRAMs and processors (so called, DRAM-stacked processor) has
received enormous attention recently [1]–[7]. Most of those works
focused on utilizing the abundant memory bandwidth brought by
a large number of I/Os implemented with dense Through Silicon
Vias (TSVs) to increase the system throughput. This direction is
not irrelevant to the tendency that most researches on CMP focused
on the overall throughput of a system rather than the latency of
a single application. However, real-world workloads have different
requirements for their throughput and latency, and many workloads
are oriented more to the latency than the throughput, e.g. compiler
and compressor [8]. Even among throughput-oriented workloads, the
required throughput can vary.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 2012,
November 5-8, 2012, San Jose, California, USA
Copyright c©2012 ACM 978-1-4503-1573-9/12/11... $15.00

For this reason, heterogeneous CMP has been eagerly studied and
adopted by many products these days, e.g. Intel’s Sandy Bridge,
AMD’s Fusion, and most of the recent application processors for
smartphones. In heterogeneous CMPs, the cores may have different
functionalities and instruction set architectures (ISAs), and each core
executes workloads suitable for it; for example, a complex out-
of-order CPU executes latency-oriented workloads or those having
high instruction-level parallelism (ILP), while a GPU (or a cluster
of simple in-order cores) executes throughput-oriented or massively
parallel general-purpose workloads as well as graphics-related ones.

Unlike the heterogenous CMP is gaining more popularity, re-
cent researches for 3D-stacked DRAM (hereafter, 3D-DRAM for
short) still focused on maximizing memory bandwidth [1], [3]–
[7]. However, real-world workloads impose various requirements
on DRAMs just as they do on the cores. For example, latency-
oriented workloads (or the cores executing them) are very likely to
require short access latency from memory, while throughput-oriented
workloads are likely to require high memory bandwidth. It is an
impractical (or impossible) solution to achieve both short latency
(which needs finer-grained array partitioning) and high bandwidth
(which needs wider I/O width, more banks and ports) with the current
DRAM architecture since it inevitably degrades both the density and
the energy efficiency of DRAM significantly.

Meanwhile, DRAM is spotlighted as a major power consumer
in modern systems. In servers, the operating costs induced by the
power consumption of DRAM chips easily exceed their purchase
cost [11]. Also, it was reported that the power consumption of
DRAM may exceed that of CPU depending on running applications
in smartphones [12]. This trend makes the traditional cost-per-bit
minimization approach of DRAM questionable, and motivates to put
more weights on the energy efficiency even though the cost-per-bit
is somewhat compromised.

By tackling those issues, we propose a novel asymmetric 3D-
DRAM architecture for heterogeneous CMPs. In the proposed ar-
chitecture, the entire DRAM die is divided into multiple indepen-
dent segments1 where the segments have different configurations in
order to meet the different memory requirements of heterogeneous
cores. The proposed 3D-DRAM architecture is shown in Fig. 1,
in comparison with the conventional architectures (details will be
discussed in Section IV). Note that different heterogeneous CMPs
may have completely different memory requirements and there exist
infinitely many combinations of cores for composing a heterogeneous
CMP. Therefore, we also propose a synthesis method which finds the
best asymmetric 3D-DRAM architecture for the given heterogeneous
CMP and the memory requirements of the cores in it. To the best
of our knowledge, this is the first work which exploits the various
implementation choices of DRAM arrays and their asymmetric in-

1The terms ‘DRAM segment’ and ‘segment’ will be used interchangeably
throughout the paper depending on the context.

73

(a) Traditional 3D-DRAM [9] (b) Symmetrically segmented 3D-
DRAM [6], [7], [10]

Memory interface

DRAM I/O
(TSV)

Logic tier

DRAM tier

Asymmetric DRAM segments:
same process technology,
but different
- capacity,
- number of banks,
- number of ports,
- data width,
- array configurations,
- etc.

(c) Proposed asymmetric 3D-DRAM

Type Latency Req.BW MLP Capacity
① moderate moderate small very large
② loose high very large large
③ very tight low small small
④ tight high large small

(d) Memory access characteristics of the cores

Fig. 1: The concepts of the asymmetric 3D-DRAM architecture and
the conventional ones.

tegration, especially for DRAM-stacked heterogeneous CMPs. Our
experimental results show that the proposed architecture can reduce
the area-power-product of 3D-DRAM enormously compared to the
conventional 3D-DRAM architectures.

The rest of the paper is organized as follows. In Section II, the
related works will be summarized. In Section III, the background
for this work will be briefly presented. In Section IV, motivational
examples will be given. In Section V, the automatic synthesis method
for the asymmetric 3D-DRAM will be presented. In Section VI, the
evaluation results for the proposed architecture and the synthesis
method will be demonstrated and discussed. In Section VII, the
concluding remarks and future works will be given.

II. RELATED WORKS

Many researchers have proposed 3D-DRAM architectures for
DRAM-stacked homogeneous CMPs. Loh proposed true 3D architec-
ture in [1] which aggressively partitions the DRAM arrays and uses
very large number of TSVs to maximize the bandwidth benefit of
3D-stacked environment. The author evaluated his method in general-
purpose quad-core environment for multi-programmed workloads
focusing on the overall throughput. Woo et al. proposed SMART-3D
architecture to tackle the performance of single-threaded workloads
as well as the overall throughput in [2]. Woo et al. also proposed
heterogeneous 3D-DRAM architecture in [3] which tightly integrates
SRAM row caches with DRAM arrays to improve performance and
energy efficiency. However, all of these works did not consider
various requirements of heterogeneous CMPs and did not consider
the various array partitioning of DRAM.

In [4], Tsai et al. presented design space exploration for 3D-
stacked SRAM cache with the consideration of various implemen-

tation choices for SRAM arrays. They showed that different array
partitioning can have significant effect on delay and energy. However,
besides the fact that they focused on SRAM not DRAM, they did not
consider the asymmetric architecture of memory dies unlike our work.

There have been several works for exploring the design space
of memory system. The authors of [13], [14] presented extensive
optimization methods covering software-level memory optimizations
and memory system organizations. In their methods, the number of
ports and the word size of each memory can be explored as well as
the number of memories. In [15], Pasricha et al. proposed a co-design
method of on-chip communication architecture and memory system.
Their work reduces the number of on-chip memories by merging the
data blocks considering their access patterns. They also tries to select
the proper type of memories among DRAM, SRAM, eDRAM, and
EEPROM for the memory blocks. In [5], Weis et al. demonstrated
design space exploration results for 3D-DRAM. They evaluated four
different array partitioning of 128Mbit bank for several technology
nodes. This work was extended by Gomony et al. in [16] which
proposed a selection method for the type and array configuration of
DRAM. Specifically, the authors in [16] proposed a framework which
selects the appropriate DRAM among LPDDR, LPDDR2, and 3D-
DRAMs of several configurations for complex memory requirements
of heterogeneous CMPs. However, all of these works considered only
a limited set of memory configurations and, above all, they considered
only the symmetric architecture for the memory.

Compared to the previous works, the proposed work has the
following contributions:

• We propose an asymmetric 3D-DRAM architecture in which
the DRAM die is divided into multiple segments. Each segment
is optimized for different requirements of heterogeneous cores.
Since the differentiation of the segments are done in the layout
level, the proposed architecture does not need any change in
current 3D-DRAM fabrication process.

• We propose an automatic synthesis method for the asymmetric
3D-DRAM architecture. It finds the configurations of all the
DRAM segments, such as numbers of banks and ports, I/O
width, and array partitioning, which minimize the power con-
sumption and area of the 3D-DRAM while satisfying the various
memory requirements of the heterogeneous cores.

Meanwhile, a drawback of the proposed architecture is that there
can be white space on the die due to the asymmetric segmentation (as
shown in Fig. 4b). However, this white space can be used for through-
DRAM TSVs. As tackled in [17], there necessarily exist a bunch of
through-DRAM TSVs in DRAM-stacked processors since the DRAM
tiers are located between the processor tier and the package substrate.
Many power and signal I/Os should be delivered from the package to
the processor tier through the DRAM tiers. By using the white space
for through-DRAM TSVs, the drawback of the proposed architecture
can be mitigated.

III. BACKGROUND

In this section, the information needed to understand this work will
be given. Throughout the paper, we adopt the basic architecture and
terms for DRAM used in [18]. Fig. 2 shows the basic architecture of
DRAM. In modern DRAMs, a bank is the basic unit of independent
DRAM operation. A bank consists of one or more subbanks, as shown
in Fig. 2a, and one subbank is read or written during each memory
access to the bank. A subbank is divided into multiple subarrays and
each subarray returns or stores a portion of the requested data. A
subarray consists of arrays of the memory cells and the supporting
peripherals such as sense amplifiers and column multiplexors. Fig. 2b

74

sense amp. sense amp.
sense amp.

column decoder

ro
w

 d
ec

od
er

Bank

sense amp.
sense amp. sense amp.

sense amp. sense amp.

Subbank

subarray

(a) Logical view of a DRAM bank

Ndwl

NdblH-tree

subarray

subbank

(b) Layout view of a DRAM bank

Fig. 2: The architecture of a DRAM bank.

0
2
4
6
8

10
12
14
16

ac
ce

ss
 ti

m
e

(n
s)

(a) Access time

0

5

10

15

20

25

30

cy
cl

e
tim

e
(n

s)

(b) Cycle time

0

10

20

30

40

50

60

ar
ea

 (m
m

2)

(c) Area

0

0.1

0.2

0.3

0.4

0.5

0.6

re
ad

 e
ne

rg
y

(n
J)

(d) Read energy

0
0.5

1
1.5

2
2.5

3
3.5

4

w
rit

e
en

er
gy

 (n
J)

(e) Write energy

0

0.5

1

1.5

2

2.5

le
ak

ag
e

po
w

er
 (W

at
t)

(f) Leakage power

Cap. Bank Port Page size Burst len. Prefetch Tech. node
128MB 1 8 x 1 8KB 8 8 32nm

(g) Given configurations for the DRAM

Fig. 3: Various implementations of a DRAM and their characteristics.

shows layout view of the DRAM in Fig. 2a. The entire DRAM array
is partitioned into plenty of identical smaller arrays in order to reduce
the latency and the arrays are connected via H-tree. Typically but not
generally, the latency decreases and the area increases as dividing the
entire array into more pieces.

Fig. 3 shows how widely the characteristics of a DRAM can vary
depending on the array partitioning. The values shown in Fig. 3a
to 3f are obtained by Cacti 6.5 [19] for the DRAM described in
Fig. 3g, with the different objectives represented by the x-axis. The
results show that, for instance, the DRAM optimized for the power
consumption has 2.0 times larger area than the one optimized for the
area. On the other hand, the DRAM optimized for the area consumes
8.5 times more energy for a write operation and 2.3 times more
leakage power than the one optimized for the power consumption.
Likewise, there exist plenty of trade-off points for a DRAM, but most
commercial DRAMs have been optimized mainly for the cost-per-bit
(i.e. area).

IV. MOTIVATIONAL EXAMPLES

Fig. 1 compares the proposed asymmetric 3D-DRAM architecture
with the conventional ones, where the four types of cores impose
conflicting requirements on the DRAM as described in Fig. 1d.

codec

graphics

m_ddr1_codec
(32MB)

m_ddr0_graphics
(64MB)

m_ddr1_graphics
(64MB)

m_ddr1_proc
(64MB)

m_ddr0_proc
(256MB)

m_ddr0_security
(16MB)

m_ddr0_imaging
(16MB)

proc

security

imaging

(9.0, 7)
(9.0, 7)

(6.9, 25)

(6.9, 100)

(3.0, 100)

(1.5, 10)

(1.5, 100)

(1.5, 100)

(1.5, 100)

(a) Core-DRAM com-
munication graph

m_ddr0_graphicsm_ddr0_security m_ddr0_imaging

32x1

m_ddr0_proc

16x1 32x1

64x1

m_ddr1_proc

m_ddr1_graphics

16x1

8x1

m_ddr1_proc

Area = 106.6 mm2

Power = 283.2 mW

(b) Proposed

128x1

Area = 160.4 mm2

Power = 509.4 mW

(c) Traditional

128x1 128x1

128x1 128x1

Area = 170.7 mm2

Power = 965.9 mW

(d) Mimic of JEDEC Wide
I/O

Fig. 4: Comparison of 3D-DRAM architectures obtained for
mobile_ap×30.

Fig. 1a represents a traditional 3D-DRAM in which the design of
the DRAM die is almost unchanged from the 2D DRAM. In this
architecture, the DRAM is connected to the processor via the central
memory interface. This architecture may have the smallest area but is
not adequate for the core types ② and ④ which have high bandwidth
requirements and large memory level parallelism (MLP), since all the
memory accesses should compete for the central memory interface.
The symmetrically segmented 3D-DRAM architecture, shown in
Fig. 1b, may improve the performance of the memory accesses
with large MLP. Recently released JEDEC Wide I/O SDRAM [20]
basically falls into this category while it constrains some logical
and physical configurations.2 This architecture is suited rather for
homogeneous CMP environment where the cores have similar or
arbitrary memory requirements than for heterogeneous CMP envi-
ronment. For example, if the entire DRAM arrays are optimized to
high bandwidth, the tight latency requirements of the core types ③
and ④ may not be satisfied. Many throughput-oriented 3D-DRAM
architectures in [1]–[3] may also have the same problem due to their
symmetric architectures. Unlike the 3D-DRAM in Fig. 1b, the DRAM
is divided into asymmetric segments optimized for the serving cores
in the proposed architecture, as shown in Fig. 1c. For example, for
the core types ③ and ④ which run latency-oriented workloads, the
DRAM arrays are partitioned in finer-grained compared to the other
segments. For the core type ② which requires relatively loose latency,
coarser-grained array partitioning is used, but multiple ports are used
to support the high bandwidth requirements and the large MLP.

2It specifies the number of segments to four, the data width to 128b per
channel, and the location of the interfaces to the center of the chip.

75

TABLE I: Parameters for a DRAM segment.

High level parameters Array parameters
Symbol Description Symbol Description

C
memory capacity (e.g. in
MB) Ndwl

number of divisions of a
wordline in a bank

Nbank number of banks Ndbl
number of divisions of a bit-
line in a bank

Nport number of ports Ndcm degree of muxing at bitline

Wdata width of data I/O Ndsam1
degree of level-1 muxing at
sense amp.

Wpage page size Ndsam2
degree of level-2 muxing at
sense amp.

Wpref prefetch width
BL burst length

shared
address buswordline decoder

& driver

Wdata/K bit data bus

sense amp. &
column mux

Memory interface
on logic tier

Subarray

K DRAM tiers

Fig. 5: The architecture of a subbank in the proposed 3D-DRAM
when multiple DRAM tiers are stacked.

Fig. 4 shows the results for one of the benchmarks used in our
experiments. Fig. 4a shows the memory requirements of the cores
where the ovals represent the cores and the gray rectangles (with
rounded corners) the memory regions (see Section V-B for detail).
An edge is annotated with the required bandwidth in GB/s and the
latency constraint in ns, in the first and the second places in the
parenthesis, respectively. Fig. 4c, 4d, and 4b are the obtained DRAM
layouts based on the architectures in Fig. 1a, 1b, and 1c, respectively.
Fig. 4d is a mimic of JEDEC Wide I/O SDRAM where the number
of segments (or channels), the number and the width of the ports are
fixed to those specified in the standard (see Section VI-A for detail).
Compared to the proposed architecture, the ones in Fig. 4c and 4d
suffer from large area and power consumption since either the entire
DRAM chip or all the segments should support the tightest latency
constraint (7ns) and the highest bandwidth requirement (9GB/s) (a
quarter of 9GB/s for each segment in Fig. 4d). On the other hand,
in the proposed architecture, the segments are optimized for different
memory requirements of the heterogeneous cores. As a result, both
the area and the power consumption can be significantly reduced, as
shown in Fig. 4b.

V. ASYMMETRIC 3D-DRAM SYNTHESIS

A. Preliminaries and Assumptions

A segment can have independent configuration parameters listed in
Table I. In this work, we consider only the bi-directional read-write
port since it is observed during the experiments that considering ex-
clusive read/write port hardly improves the solution while increasing
the synthesis time considerably.

We also assume that there is no direct connection between the
different segments on the DRAM die and, therefore, a core which tries
to access a segment must first access the memory interface connected
to the segment via the on-chip network, similarly to [7], [10]. We also
assume that the software-level memory optimizations to reduce the

memory sizes and accesses are already done prior to our synthesis
process by, for example, the methods in [13], [14].

As for the case where more than one DRAM tiers are stacked,
we adopt the coarse-grained 3D array partitioning in [6] with an
exception; in [6], a TSV bus interface is located at the center of each
3D subbank which consists of multiple stacks of 2x2 subarrays, so
that the H-tree delay can be minimized. However, this may result
in too many TSVs especially when the array is partitioned in very
fine-grained. Therefore, in our architecture, this constraint is relaxed
and one TSV bus interface is located at the center of each DRAM
segment so that it can serve multiple subbanks in the segment. Note
that, in the multiple tier case, a segment consists of multiple segment
slices across all the tiers. The subbank architecture for the multiple
tier case is shown in Fig. 5. Each tier takes an evenly distributed
portion of the requested data, i.e. Wdata/K bits, and the data is read
from or written to the identical planar location of each tier. Therefore,
the same address is broadcast to all the tiers while the separate data
TSVs should be provided for each tier.

Meanwhile, we use the product of area and power consumption
(area-power-product) as the cost function of the synthesis. The reason
is that, as mentioned in Section I, the cost-per-bit cannot be the
only criteria of DRAM anymore in modern systems, but the power
consumption is as important as the cost-per-bit. We also assume
closed page policy for DRAM since it has been reported in [11] that
the row buffer hit rate decreases as the number of cores increases.

B. Problem Definition
Our synthesis process takes the followings as inputs:
• A core-DRAM communication graph (CDCG) is a directed

graph CDCG = G(V,E). A vertex v ∈ V denotes either a core
or an abstract memory region (AMR). We will denote the set of
vertices of the first type as Vcore and that of the second type
as VAMR. An edge e(vi, vj) ∈ E denotes the communication
from vi to vj where vi and vj are of different types.

• An AMR has an attribute indicating its capacity, denoted as
Cap(v). An edge has attributes BWwr(e) and Latwr(e) which
are respectively the required bandwidth (e.g. in MB/s) and the
latency constraint (e.g. in ns) for write operation. Similarly,
BWrd(e) and Latrd(e) exist for read operation.

• The number of DRAM tiers K.
• The DRAM technology-related information, such as technology

node (e.g. 32nm) and cell type (e.g. high performance or low
standby power).

Our synthesis problem is defined as follow; Given the input
information listed above, find the best mapping of n AMRs to
m DRAM segments, where m ≤ n, and the best configuration
parameters for each segment, such that the area-power-product of
the 3D-DRAM is minimized while satisfying all the requirements in
the CDCG.

C. Overview of the Synthesis Process
Our synthesis process consists of two phases; in the first phase

(let say Phase-I), it assigns a dedicated segment to each AMR and
finds the best configuration for each segment (left half of Fig. 6).
The resulting DRAM from Phase-I can be badly fragmented due to
a large number of segments, with large amount of white space and
poor area efficiency. In order to improve area efficiency, the second
phase (let say Phase-II) iteratively merges two AMRs into a new
AMR, and finds the best segment again for the new AMR, until the
given iteration count is reached (right half of Fig. 6). Both Phase-
I and Phase-II employ the procedure GA-AMRtoSEG as their core

76

• CDCG
• DRAM tech, parameters
- tech. node
- cell/interconnect type

Start

MaxGen
reached?

Phase-I
best sol.

����= Find best segment
for all � � �	
�

(using)

Floorplan (���)

�� = Merge_AMRs (�
, ��)

���� = Find best segment for���
(using)

Floorplan with ����
instead of (���
� ����)

Replace �
� �� with ��
Replace ���
� ���� with ����

Update solution

MaxIter
reached?

Phase-II
best sol.

End

Phase-I Phase-II

no
yes

in
pu

t t
o

Ph
as

e-
II

Evaluate and
update solution

improve
solution?

yes
no

no
yes

Fig. 6: The overview of the synthesis process.

����� ����� ����� ����� ���� !" array parameters

chromosome acquired characteristics

individual0

individualn-1

population

(a) Encoding

$ #% &'(# &

individual0 individual1

n-1th generation & #)$ #'(& *

)$ &'(# * & $ #% '(& &nth generation

(b) Crossover

Fig. 7: The proposed GA encoding and crossover strategies.

which realizes an AMR to a DRAM segment based on the genetic
algorithm (GA).

D. Finding Best Physical DRAM Segment for an AMR
Before explaining Phase-I and Phase-II, we first explain the proce-

dure GA-AMRtoSEG which plays core role in our synthesis process;
it realizes an AMR into a physical DRAM segment by obtaining
the best segment configuration for the AMR using the GA. Fig. 7
shows our encoding and crossover strategies for the GA. A DRAM
segment is represented by an individual; an individual is identified by
its chromosome and acquired characteristics, as shown in Fig. 7a. The
chromosome contains relatively high level information for a DRAM
segment while the acquired characteristics contain the parameters
related to the array partitioning. At a certain generation, the individ-
uals in the population represent various segment configurations for
the corresponding AMR. They are evaluated for their fitness (area-
power-product in this work), and the individual having the best fitness
survives to the next generation, while the rest individuals are replaced
with new individuals produced by crossover (Fig. 7b). As generations
pass by, only the chromosomes are inherited generation to generation
while the acquired characteristics are indeed acquired depending on
the weighting coefficients for delay, area, and energy, which vary
adaptively over generations.

The pseudo-code of GA-AMRtoSEG is shown in Algorithm 1. The
procedure takes an AMR v and the violation ratios of access time and
cycle time for the AMR in the previous generation (rvacc and rvcyc,
respectively) as its inputs, and outputs the best segment configuration
parameters. rvacc (rvcyc) is defined as the number of individuals in

Algorithm 1 GA-AMRtoSEG
Input: AMR v, rvacc, rvcyc
Output: best segment best seg

1: produce population POP ;
2: Wv = renew weights(rvacc, rvcyc);
3: for ind ∈ POP do
4: seg = find best array(ind, Wv, Cap(v)/K);
5: evaluate segment(seg);
6: if seg is the best segment so far then
7: best seg = seg;
8: end if
9: end for

the population which cannot meet the latency (bandwidth) constraint
imposed on v, divided by the number of individuals in the population.

It starts by producing MaxPop individuals into the population
POP (line 1), where MaxPop is a user-defined parameter indicating
the number of individuals in a population. After that, the weighting
coefficients for the access time (wv

acc), cycle time (wv
cyc), area

(wv
area), and energy (wv

energy) are renewed based on rvacc and rvcyc.
The set of these weighting coefficients is denoted as Wv. Specifically,
wv

acc and wv
cyc are increased (decreased) by a user-defined parameter

δ if the corresponding violation ratios are greater (smaller) than
another user-defined parameter α.

From lines 3 to 9, the best segment for every individual is obtained
and evaluated, and the best segment for the AMR v is finally chosen
for the output. At line 4, the best array configuration of the individual
(i.e. the ‘acquired characteristics’ of the individual) is obtained by
using Cacti 6.5, which is a widely used optimization tool for SRAM
and DRAM. The capacity of the AMR v, the chromosome of the
individual, and the weighting coefficients are used as the inputs
to Cacti, and then Cacti outputs the best array parameters and the
physical characteristics of the obtained array, e.g. height, width,
access time, cycle time, read/write energy, etc. Since we assume the
coarse-grained partitioning shown in Fig. 5, all the segment slices
in K tiers have an identical shape. Therefore, the array parameters
for only one segment slice is obtained by inputting �Cap(v)/K�
and �Wdata/K� to Cacti and the remaining segment slices are just
duplicates of the obtained segment slice.

At line 5, the obtained segment is evaluated for its feasibility (i.e.
whether all the memory requirements are met) and cost (i.e. area-
power-product). The following inequality should hold in order for
the segment to satisfy the latency constraint.

∀e incident to v,

tacc ≤ min(Latrd(e), Latwr(e)) (1)

where tacc is the random access time of the segment.
Checking bandwidth constraint is more complicated since it is

influenced by many parameters of DRAM. For example, longer burst
length may reduce the effective random cycle time by reducing
the frequency of opening new rows. Also, larger number of banks
may reduce the effective cycle time by increasing the chance of
bank interleaving. Assuming that the chance of bank interleaving is
proportional to the number of banks, we calculate the effective cycle
time, teff cyc, as follows;

teff io clk =
tarr io

Wpref
(2)

teff cyc no il =
tcyc + teff io clk × (BL− 1)

BL
(3)

teff cyc =
1

Nbank
× texp cyc no il + (1− 1

Nbank
)× til cyc (4)

77

Algorithm 2 Phase-I
Input: CDCG
Output: best SEG p1

1: for v ∈ VAMR do
2: initialize Wv , rvacc, rvcyc;
3: end for
4: for g = 1 → MaxGen do
5: SEG = ∅;
6: for v ∈ VAMR do
7: best seg = GA-AMRtoSEG(v, rvacc, rvcyc);
8: SEG = SEG ∪ {best seg};
9: end for

10: floorplan(SEG);
11: evaluate curr solution(SEG);
12: if SEG is the best solution so far then
13: best SEG p1 = SEG;
14: end if
15: {rvacc, rvcyc} = update violation ratio;
16: end for

teff io clk is the effective clock period at the I/O side and tarr io

is the delay between data I/O and the row buffer of the DRAM
array. Since I/O clock period longer than tacc io will result in
underutilized DRAM performance in burst transfer, we assume that
tacc io determines the I/O clock period in single data rate (SDR)
transfer. When double data rate (DDR) transfer with Wpref > 1
is used, the effective clock period at the I/O is reduced by Wpref .
teff cyc no il is the effective random cycle time when burst transfer
is considered but bank interleaving is not, which is derived from
the random cycle time of the segment (tcyc) and teff io clk. In
turn, the effective cycle time of the segment teff cyc is derived
from teff cyc no il and the interleave cycle time til cyc. Finally, we
calculate the effective bandwidth of the segment BWeff as follow.

BWeff =
Wdata ×Nport

texp cyc
(5)

Then, the following inequality should hold to meet the bandwidth
constraint.

BWeff ≥
∑

e incident to v

(BWrd(e) +BWwr(e)) (6)

E. Phase-I and Phase-II
The detailed algorithms of Phase-I and Phase-II are explained

in this subsection. First, the pseudo-code of Phase-I is shown in
Algorithm 2. The algorithm starts by initializing the weighting
coefficients to the same positive value (0.25 in this work) and the
violation ratios to zero for all AMRs (lines 1 to 3). From line 5
to 9, the best segments for all the AMRs are obtained by using
GA-AMRtoSEG and added to the set of the best segments (SEG).
After all the AMRs are realized into the physical DRAM segments,
next step is to locate the segments in the planar DRAM die such
that the die area is minimized, namely, to floorplan the segments
(line 10). We use DeFer [21] to floorplan the segments. With the
final area obtained by the floorplanning, the area-power-product of
the current generation is calculated and the best solution is updated
through lines 11 to 14. The violation ratios are updated at line 15,
and the procedure from line 5 to 15 is repeated until the generation
count reaches MaxGen.

The result of Phase-I is the input of Phase-II. The purpose of
Phase-II is to alleviate the possible area inefficiency of Phase-I due to
the segmentation by iteratively merging the AMRs. The pseudo-code
of Phase-II is shown in Algorithm 3. At the beginning of the loop
body (line 3), two AMRs to be merged are selected. The AMRs are

Algorithm 3 Phase-II
Input: best SEG p1
Output: best SEG p2

1: best SEG p2 = best SEG p1;
2: while iter ≤ MaxIter do
3: {vi, vj} = choose two AMRs;
4: vk = merge AMRs(vi, vj);
5: segk = GA-AMRtoSEG(vk);
6: SEG = {best SEG p2\{segi, segj}} ∪ {segk}
7: floorplan(SEG);
8: if current merge improves solution then
9: best SEG p2 = SEG;

10: end if
11: iter ++;
12: end while

TABLE II: Benchmarks description.

Name |Vcore| |VAMR| Tot.Cap.
(MB)

Tot.BW
(MB/s) Description

mpeg4decoder 7 7 512 3473 MPEG-4 decoder [22]

mobile ap 5 7 512 1360 mobile application pro-
cessor [23]

mobile mmp 4 8 512 1106 mobile multimedia player
SoC [23]

game soc 18 13 1024 9190 game SoC [23]

basically selected randomly but a record of the tried merges are used
to avoid selecting the same pair of AMRs repeatedly. The selected
AMRs, let say vi and vj , are merged to a new AMR vk, and the
best segment configuration for vk, let say segk, is obtained by using
GA-AMRtoSEG (lines 4 and 5). After that, floorplanning is performed
with the set of segments where the segments corresponding to vi and
vj are replaced by segk (lines 6 and 7). If the current merge improves
the area-power-product, the best set of segments are updated (lines 8
to 10), and the above procedure is repeated until the iteration count
reaches a user-defined parameter MaxIter.

VI. EXPERIMENT

A. Experiment Setup
We evaluated the proposed architecture and the synthesis method

by applying them to the benchmarks listed in Table II. The second
and the third columns of Table II are the numbers of cores and
AMRs, respectively, and the forth and the fifth columns are the total
capacity and the sum of bandwidth requirements, respectively. We
obtained the CDCGs of the benchmarks basically by extracting core-
and memory-related parts from the communication graphs (CGs)
given in [22] and [23]. More specifically, from the original CGs, the
processing elements such as CPUs, GPUs, VLIW processors, and
some of ASIC blocks are mapped to v ∈ Vcore of the corresponding
CDCGs. Similarly, the memory elements such as DRAMs, SRAMs,
and eDRAMs in the original CGs are mapped to v ∈ VAMR of
the CDCGs. When a memory is accessed by multiple cores in the
original CG, we divided the memory into multiple AMRs for some
cases so that each part of the memory can be optimized to its serving
cores. The CPUs in the benchmarks represent the latency-oriented
cores which require relatively tight latency, moderate bandwidth, and
large memory size, thus correspond to the type ① in Fig. 1d. GPUs
and VLIW processors represent the cores of the type ②. The cores
which typically execute real-time tasks, e.g. codec in mobile_ap
and mobile_mmp, are assumed to have very tight latency constraint
and high bandwidth requirement, corresponding to the type ④. Some
ASIC blocks are assumed to have the characteristics of the type ③.

Since the sizes of the memories are unavailable in the original
CGs, we assigned the sizes of the AMRs on our own discretion

78

TABLE III: Parameter settings used in the experiments.

Cacti parameters
Tech. node Cell type Peri. type Temp.

32nm commodity dram high performance 350K
Synthesis parameters

Num.tiers (K) MaxGen MaxPop MaxIter α δ
1 15 15 30 0.3 0.1

by the following rules: 1) the AMRs communicating mainly with
CPUs are considered as main memories, thus relatively large sizes
(128 to 256MB) are assigned. 2) The AMRs communicating mainly
with GPUs or VLIW processors are assigned sizes between 64 to
128MB, and those communicating with other cores are assigned small
sizes around 8 to 16MB. Total memory size is assumed as 512MB
for mpeg4decoder, mobile_ap, and mobile_mmp, and 1GB
for game_soc. Also, we assigned the latency constraint values for
mpeg4decoder by ourselves since they are unavailable in [22]. We
also modified the latency values for the rest three benchmarks to make
the problems more challenging.3 In addition, since the bandwidth
requirements of the original benchmarks are actually not challenging
when considering the bandwidth provided in modern DRAMs,4 we
multiply the bandwidth requirements of the original benchmarks by
bandwidth scale factor, denoted as BWx. The derived benchmark by
multiplying BWx will be denoted with the suffix ×BWx next to the
original benchmark name.

We compare the proposed architecture to the following ones:
• Central represents the traditional 3D-DRAM architecture in

Fig. 1a.
• Dist-n represents the symmetrically segmented 3D-DRAM ar-

chitectures in Fig. 1b where each segment is accessed via its
dedicated memory interface, and n is the number of segments.

• Dist-JEDEC is a variant of Dist-4 in which the number of ports
and the data width are forced to those specified in JEDEC Wide
I/O standard to mimic it.

Note that all the results of these compared methods are also
obtained by our synthesis method but with their architectural lim-
itations considered. For Dist-n and Dist-JEDEC, we assume that the
requests are evenly distributed over the segments. We conducted our
experiment on a virtual machine with 2 cores and 1GB main memory,
of which the host machine is a 2.8GHz Core i5-based PC. The values
of the given parameters used in the experiments are summarized in
Table III.

B. Experimental Results
Fig. 8 shows the normalized area-power-products obtained for

the proposed architecture and the compared ones, while varying
BWx from 1 to 30. The values are normalized to those of Central.
At the first glance, Dist-JEDEC shows very poor results for all
the benchmarks when BWx is small. The reason is that, when the
bandwidth requirement is low, the 128b-wide I/O width for all the
four segments can be very large overhead for both area and power
consumption. Note that the large area incurred by the wide I/O width

3More specifically, very tight latency constraint (7ns) is assigned to the
communications with the AMRs originated from SRAMs. The communica-
tions between CPUs and DRAMs are assigned tight latency constraint (10ns).
The communications between other cores and DRAMs are assigned relatively
loose latency constraints from 25 to 40ns.

4For example, Intel’s contemporary PC platform (LGA2011) already
supports the peak DRAM bandwidth of 42.7GB/s (assuming DDR3-1333,
1.333GT/s×8Bytes/channel×4-channels) while the highest total required
memory bandwidth among the benchmarks is 9.2GB/s in game_soc.

accompanies increased delay due to longer wire length, and it in
turn results in increased power consumption due to more aggressive
repeater insertion and larger drivers to meet the latency constraint.
For this reason, the overhead of Dist-JEDEC is alleviated as the
required bandwidth increases (i.e. as BWx increases).

On the contrary, Central shows the best results for all the bench-
marks when BWx=1 but becomes worse as the required bandwidth
increases. Since the only memory interface should cope with all
of the memory requests, it experiences the highest pressure for the
bandwidth increase among the compared architectures. As a result,
the wider I/O width and more banks are required for Central to
meet the bandwidth requirements than the other architectures, as the
required bandwidth increases.

The proposed architecture shows significant reductions in area-
power-product for all the benchmarks, especially when the required
bandwidth is high. Compared to Central, the largest reduction is
94.4% achieved for game_soc×25, and the average reduction over
all the benchmarks and BWx’s is 48.2%. Compared to the symmetric
architectures, i.e. Dist-n and Dist-JEDEC, the reduction in area-
power-product is up to 91.7% (achieved for game_soc×30) and
69.4% on average.

We also conducted experiments while increasing the capacity of
the DRAMs by double (×2) and quadruple (×4) for the benchmarks
with BWx=30.5 Note that this experiment indirectly shows the effect
of more tightened latency constraint since the delay of DRAM
typically increases as the capacity increases. The results are shown
in Fig. 9 where the values are normalized to those of ×1 of Central.
First of all, the results show that Central fails to find the valid
solutions for mpeg4decode×30 with quadrupled capacity and
game_soc×30 with doubled capacity. This infers the limitation of
the traditional 3D-DRAM architecture on the latency-oriented tasks,
showing that the just increasing the capacity of DRAM can make
their constraint violated. The symmetric 3D-DRAM architectures,
i.e. Dist-n and Dist-JEDEC, manage to find valid configurations
but the area-power-products dramatically increase as the capacity
increases. The proposed asymmetric 3D-DRAM architecture again
shows significant area-power-product reductions with the increased
capacity. When the capacity is doubled, the average reductions (for
successful cases) are 63.0% and 75.5% compared to Central and the
symmetric architectures, respectively.

The synthesis time is dependent mainly on the number of invo-
cations of Cacti, thus almost linearly proportional to MaxPop ×
MaxGen× |VAMR|. In our experiments, the longest synthesis time
is about 27 minutes (for game_soc×30).

VII. CONCLUSIONS AND FUTURE WORKS

Based on the observation that the desired properties for the cores
vary widely among applications, heterogeneous CMP is gaining its
popularity. In this work, we propose the asymmetric 3D-DRAM
architecture for heterogeneous CMPs and the automatic synthesis
method for it, by tackling the inadequateness of the previous
3D-DRAM architectures in heterogeneous CMP environment.
The experimental results support our idea by showing enormous
reductions in area-power-product, where the reductions are more
than 60% (conservatively) for most of the test cases. At this time,
our work has limitations on capturing and exploiting the properties
of memory accesses; the MLP is not considered when evaluating
the adequateness of the DRAM segments. Also, the shared memory

5The experiments for game_soc with quadrupled capacity could not be
done due to the limitation of Cacti 6.5 that it cannot support 4GB of memory.

79

0
0.5

1
1.5

2
2.5

3

x1 x5 x10 x15 x20 x25 x30 x1 x5 x10 x15 x20 x25 x30 x1 x5 x10 x15 x20 x25 x30 x1 x5 x10 x15 x20 x25 x30

mpeg4decode mobile_ap mobile_mmp game_soc

Ar
ea

-P
ow

er
-P

ro
du

ct

(m
m

2
×

W
at

t)
(N

or
m

al
iz

ed
 to

 ‘C
en

tra
l’)

Central Dist-JEDEC Dist-2 Dist-4 Dist-8 Proposed
7.41 7.97 8.41 5.26 8.05 7.36 5.20 4.56 3.41

Fig. 8: Comparison of the area-power-products for various bandwidth requirements. The values are normalized to those of Central.

x1 x2 x4 x1 x2 x4 x1 x2 x4 x1 x2

mpeg4decode×30 mobile_ap×30 mobile_mmp×30 game_soc×30

Ar
ea

-P
ow

er
-P

ro
du

ct

(m
m

2
W

at
t)

(N
or

m
al

iz
ed

 to
 x

1
of

 ‘C
en

tra
l ’

)

Central Dist-JEDEC Dist-2 Dist-4 Dist-8 Proposed
FAIL 11.2 9.36 8.02 11.9 8.80 FAIL

Fig. 9: Comparison of the area-power-products for various capacities. The values are normalized to those of ×1 of Central. This indirectly
shows the effect of more tightened latency constraints.

regions for data exchange among cores need to be considered more
sophisticatedly. We plan to solve those problems to improve the
work.

Acknowledgement
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MEST) (No.
2011-0026454 and No. 2011-0027625).

REFERENCES

[1] G. Loh, “3d-stacked memory architectures for multi-core processors,”
in ACM SIGARCH Computer Architecture News, vol. 36, no. 3. IEEE
Computer Society, 2008, pp. 453–464.

[2] D. Woo, N. Seong, D. Lewis, and H. Lee, “An optimized 3d-stacked
memory architecture by exploiting excessive, high-density tsv band-
width,” in High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on. IEEE, 2010, pp. 1–12.

[3] D. Woo, N. Seong, and H. Lee, “Pragmatic integration of an sram row
cache in heterogeneous 3-d dram architecture using tsv,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, no. 99, pp.
1–13.

[4] Y. Tsai, F. Wang, Y. Xie, N. Vijaykrishnan, and M. Irwin, “Design space
exploration for 3-d cache,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 16, no. 4, pp. 444–455, 2008.

[5] C. Weis, N. Wehn, L. Igor, and L. Benini, “Design space exploration for
3d-stacked drams,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[6] H. Sun, J. Liu, R. Anigundi, N. Zheng, J. Lu, K. Rose, and T. Zhang,
“3d dram design and application to 3d multicore systems,” Design &
Test of Computers, IEEE, vol. 26, no. 5, pp. 36–47, 2009.

[7] I. Loi and L. Benini, “An efficient distributed memory interface for
many-core platform with 3d stacked dram,” in Proceedings of the
Conference on Design, Automation and Test in Europe. European
Design and Automation Association, 2010, pp. 99–104.

[8] J. Meng and K. Skadron, “A reconfigurable simulator for large-scale
heterogeneous multicore architectures,” in Performance Analysis of
Systems and Software (ISPASS), 2011 IEEE International Symposium
on. IEEE, 2011, pp. 119–120.

[9] C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-
memory performance gap with 3d ic technology,” Design & Test of
Computers, IEEE, vol. 22, no. 6, pp. 556–564, 2005.

[10] A. Marongiu, M. Ruggiero, and L. Benini, “Efficient openmp data
mapping for multicore platforms with vertically stacked memory,” in
Proceedings of the Conference on Design, Automation and Test in

Europe. European Design and Automation Association, 2010, pp. 105–
110.

[11] A. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. Jouppi, “Rethinking dram design and organization
for energy-constrained multi-cores,” in ACM SIGARCH Computer Ar-
chitecture News, vol. 38, no. 3. ACM, 2010, pp. 175–186.

[12] A. Carroll and G. Heiser, “An analysis of power consumption in
a smartphone,” in Proceedings of the 2010 USENIX conference on
USENIX annual technical conference. USENIX Association, 2010,
pp. 21–21.

[13] P. Slock, S. Wuytack, F. Catthoor, and G. De Jong, “Fast and extensive
system-level memory exploration for atm applications,” in System Syn-
thesis, 1997. Proceedings., Tenth International Symposium on. IEEE,
1997, pp. 74–81.

[14] A. Vandecappelle, M. Miranda, E. Brockmeyer, F. Catthoor, and D. Verk-
est, “Global multimedia system design exploration using accurate mem-
ory organization feedback,” in Design Automation Conference, 1999.
Proceedings. 36th. IEEE, 1999, pp. 327–332.

[15] S. Pasricha and N. Dutt, “Cosmeca: application specific co-synthesis of
memory and communication architectures for mpsoc,” in Proceedings of
the conference on Design, automation and test in Europe: Proceedings.
European Design and Automation Association, 2006, pp. 700–705.

[16] M. D. Gomony, C. Weis, B. Akesson, N. Wehn, and K. Goossens, “Dram
selection and configuration for real-time mobile systems,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2012.
IEEE, 2012, pp. 1–6.

[17] Q. Wu, K. Rose, J. Lu, and T. Zhang, “Impacts of though-dram vias in
3d processor-dram integrated systems,” in 3D System Integration, 2009.
3DIC 2009. IEEE International Conference on. IEEE, 2009, pp. 1–6.

[18] S. Thoziyoor, “A comprehensive memory modeling tool for design and
analysis of future memory hierarchies,” Ph.D. dissertation, University of
Notre Dame, 2008.

[19] Cacti. [Online]. Available: http://www.hpl.hp.com/research/cacti
[20] Wide I/O Single Data Rate, JEDEC Std. JESD229, 2011.
[21] J. Yan and C. Chu, “Defer: deferred decision making enabled fixed-

outline floorplanning algorithm,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 29, no. 3, pp. 367–381,
2010.

[22] E. Van Der Tol and E. Jaspers, “Mapping of mpeg-4 decoding on a
flexible architecture platform,” Media Processors 2002, vol. 4674, 2002.

[23] J. Yoo, S. Yoo, and K. Choi, “Topology/floorplan/pipeline co-design of
cascaded crossbar bus,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 17, no. 8, pp. 1034–1047, 2009.

80

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

