
A Read-while-write-based Out-of-order Scheduling for
High Performance NAND Flash-based Storage Devices

Jin-Young Kim, Sang-Hoon Park, Hyeokjun Seo, Taehee You and Eui-Young Chung
School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea

{jy0615.kim, soskhong, jjsky7, xoqhd1212}@dtl.yonsei.ac.kr, eychung@yonsei.ac.kr

Abstract—Recently, Phase-change RAMs (PRAMs) are
considered to be as a good candidate that can substitute as
DRAM cache buffers (CBs) in NAND flash-based storage devices
(NFSDs). PRAM is an adequate device to mobile consumer
electronics thanks to low static power consumption, high density
and non-volatility. However, in spite of many advantages over
DRAM, asymmetric write/read speed of PRAM causes
performance degradation in NFSD. In this paper, hence, we first
propose a novel scheduling method for an NFSD with PRAM CB
utilizing read-while-write (RWW) of PRAM. The method
schedules NFSD’s requests to service read and write
simultaneously using RWW. In the experiment result, the
proposed method reduces read and write latency on average by
30% and 19%, respectively.

Keywords—NAND flash memory, PRAM cache buffer, read-
while-write

I. INTRODUCTION
NAND flash-based storage devices (NFSDs) have been

widely employed along with the growth of mobile device
market. Modern NFSDs utilize DRAM as cache buffer (CB)
to complement various drawbacks of NAND flash memory
(NFM) such as long latency and necessity of out-of-place
update. However, the use of DRAM has become a burden to
NFSDs due to its cost and volatility.

Recently, Phase-change RAMs (PRAMs) [1] have
emerged as a good candidate that can substitute DRAMs since
they are denser than DRAMs and faster than NFMs.
Additionally, non-volatility property of PRAMs clearly
motivates researchers to utilize PRAMs as CBs in NFSDs for
better reliability [2].

However, in spite of many advantages over DRAM,
asymmetric write/read speed of PRAM is still an issue dealt by
many works [3], because slow write affects not only write itself
but also read. In this paper, hence, we propose a novel
scheduling method for NFSDs with a PRAM CB utilizing
read-while-write [4] (RWW) of PRAM to minimize
performance degradation incurred by long write latency. For
the best of our knowledge, this is the first work utilizing RWW
for PRAM CB. More specifically, the proposed method
schedules NFSD’s requests to service read and write
simultaneously with multiple banks of PRAM using RWW. As
a result, both read and write are improved because long write
latency is hidden by many read requests serviced in parallel.

PRAM cache buffer

5 4
2 1

3
2

Flushing priority

W6 R5 R4 W2 W1R3
2 2 1 1 02

W6 W2 R5 R3 W1R4
2 1 2 2 01

...
…

Proposed scheduling

In-order scheduling

Add.
Bank

Add.
Bank

Add.
Bank

Older requests

(a) Initial state of NCQ and PRAM cache buffer

W1 R3 R4 W2 R5 R3 NAND Write W6

0 5 10 15
time

(b) In-order scheduling (IS)

t1
W1

R4

W2

R5 R3

NAND Write

W6

R3

0 5 10 15
time

(c) Read-while-write-based in-order scheduling (RIS)

t2W1

R4

W2

R5 R3

NAND Write

W6

R3

0 5 10 15
time

(d) Read-while-write-based out-of-order scheduling (ROS)
Fig. 1 Comparison of total time according to scheduling methods

II. PROPOSED METHOD
In NFSD with Serial-ATA interface, a request given from a

host is first queued in the native command queuing (NCQ) and
is transferred to CB after scheduling. In-order scheduling (IS)
and out-of-order scheduling (OS) are to service incoming
requests considering their arrival times and their data
characteristics, respectively [5]. We investigate this part to
minimize the performance degradation by long write latency of
PRAM.

RWW is a unique feature of PRAM which improves
throughput of PRAM by handling read and write in parallel
using independent banks within a PRAM. We propose a novel
scheduling method that utilizes RWW of PRAM, which is
called a read-while-write-based out-of-order scheduling (ROS).

First, ROS reorders requests in the NCQ to handle as many
read as possible while ongoing write is serviced in parallel. For
this purpose, read which is the latest inserted to the NCQ can
be serviced first if the bank for read is not occupied for write at
the same time. Such scheduling is activated only when read can
be completely hidden by RWW. Accordingly, ROS can
improve read performance without write performance
degradation.

Second, ROS also improves write latency by considering
data flushing of CB which eventually occurs due to its limited

ISCE 2014, June 22 - 25, 2014, Jeju, Korea

13

capacity. The proposed method handles read for data flushing
and write for host requests simultaneously using RWW based
on the information of CB status. As a result, data flushing,
which is an overhead for write latency, can be partially hidden
by write operations of PRAM, thus write performance of
NFSDs can be improved.

Examples of Fig. 1 demonstrate the effectiveness of the
proposed method. Fig. 1 (a) shows the initial states of the
NCQ and PRAM CB, and Fig. 1 (b), (c) and (d) are scheduled
by in-order scheduling (IS), read-while-write-based in-order
and out-of-order scheduling (RIS and ROS), respectively. To
evaluate the performance in a simple way, write/read latency
of PRAM and program latency of NFM are assumed to be 3, 1
and 5, respectively. As a baseline, IS of Fig. 1 (b) processes
requests W1, W2, R3, R4, R5 in order and W6 is processed
after flushing data of address 3 from PRAM CB, whose total
time is 18. Data flushing of CB is managed by the least
recently used (LRU) policy. RIS of Fig. 1 (c) is similar to IS
but shows reduced latency by the factor of �t1 due to parallel
operation of W2 and R3 by RWW. However, IS is not able to
improve the latency further since R4 after R3 requires the
same bank with W2, thus the total time is 17. On the other
hand, ROS of Fig. 1 (d) services R3/R4/R5 earlier than W2
and flushes data from CB before it is requested. As a result,
ROS reduces the total time of NFSD to 12 thanks to the
effective utilization of RWW.

III. EXPERIMENTS
To evaluate the effectiveness of the proposed method, we

implemented a trace-driven simulator which consists of an
FTL, a specification of PRAM [6] and NFM [7] and the
configurations of storage system. Various workloads are
collected from [8], [9] and by DiskMon [10] during daily PC
use. We assume that the capacity of PRAM and NFM is
16MB and 16GB, respectively, and the size of the NCQ is set
to 32.

Fig. 2 shows performance of the proposed method and
latency is normalized by that of IS. In the perspective of both
read and write latency, proposed ROS outperforms IS and RIS.
As shown by RIS, the effect of RWW is negligible except Web
consisting of 98% read requests. However, in Fig. 2 (a) and (b),
ROS which utilizes RWW for request reordering and data
flushing of CB improves read and write latency 30% and 19%,
on average.

Fig. 2 (c) shows Hidden Read Ratio (HRR), which is
newly defined to analyze total PRAM read latency hidden by
RWW. The larger HRR means that the more PRAM read
operations are hidden by PRAM write operations. On average,
HRR of ROS is 95% except for Web, which means that most
of read from host and read for data flushing of PRAM CB are
hidden by write requests.

IV. CONCLUSION
In this paper, we proposed a novel scheduling method for

NFSDs with PRAM CB that utilizes RWW of PRAM. The
proposed method schedules NFSD’s requests to service read
and write simultaneously using RWW. By utilizing RWW for
requests reordering and data flushing from CB, the proposed

method hides most of read time while write is in progress. In
the experiment result, the proposed method reduces read and
write latency by 30% and 19%, on average.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIN1 FIN2 MSR1 MSR2 EXCH MSN Web G-PP Average

N
or

m
al

iz
ed

 R
ea

d
 L

ate
nc

y

IS RIS ROS

(a) Normalized read latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIN1 FIN2 MSR1 MSR2 EXCH MSN Web G-PP Average

No
rm

ali
ze

d
 W

rit
e

La
ten

cy

IS RIS ROS

(b) Normalized write latency

 0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIN1 FIN2 MSR1 MSR2 EXCH MSN Web G-PP Average
Hi

dd
en

 R
ea

d
 R

ati
o

IS RIS ROS

(c) Hidden read ratio
Fig. 2 Performance of proposed method

ACKNOWLEDGMENT
This work (Grant No. C0146555) was supported by Business
for Cooperative R&D between Industry, Academy, and
Research Institute funded Korea Small and Medium Business
Administration in 2013, by IDEC (IC Design Education
Center) and by Samsung Electronics.

REFERENCES
[1] ITRS, “International technology roadmap for semiconductors,”

Semiconductor Industry Association, Tech. Rep, 2009.
[2] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng, “A pram and nand flash

hybrid architecture for high-performance embedded storage
subsystems,” in Proceedings of the 8th ACM international conference
on Embedded software, pp. 31–40, 2008.

[3] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Monta˜no,
“Improving read performance of phase change memories via write
cancellation and write pausing,” in High Performance Computer
Architecture (HPCA), 2010.

[4] K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, et al.,
“A 90 nm 1.8v 512 Mb diode-switch pram with 266 MB/s read
throughput,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp.
150–162, 2008.

[5] S. S. Hahn, S. Lee, and J. Kim, “SOS: Software-based out-of-order
scheduling for high-performance nand flash-based ssds,” in Mass
Storage Systems and Technologies (MSST), pp. 1–5, 2013.

[6] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, et al., “A
20nm 1.8 v 8Gb pram with 40MB/s program bandwidth,” in IEEE Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), pp. 46–
48, 2012.

[7] Micron Technology Inc., NAND Flash Memory Datasheet,
MT29FXXG08AXXXX, 2009.

[8] UMass Trace Repository, http://traces.cs.umass.edu/, June 2007.
[9] Storage Networking Industry Association, http://iotta.snia.org/, 2011.
[10] DiskMon, http://technet.microsoft.com/enus/sysinternals/bb896646,

2010.

ISCE 2014, June 22 - 25, 2014, Jeju, Korea

14

