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Abstract—On-chip interconnection network is a crucial de-
sign component in high-performance System-on-Chips (SoCs).
Many of previous works have focused on the automation of
its topology design, since the topology largely determines its
overall performance. For this purpose, they mostly require a
switch library which includes all possible switch configurations
(e.g. the number of in/output ports and data width) with their
implementation costs such as delay, area, and power. More
precisely, they characterize the switches by synthesizing them
with a common design objective (e.g. minimizing area) and
common design constraints for a given gate-level design library.
The implementation costs are used in evaluating the topologies
throughout the topology synthesis. The major drawback of single
switch library approach is that it forces the topology synthesis
methods to search the best topology with the assumption that
all the switches comprising a topology will be implemented
(synthesized) with a common design objective and common design
constraints. Such assumption prevents them from exploring
diverse combinations of the switches for a topology from the
implementation perspective. To tackle this issue, we propose a
topology synthesis method with multiple switch libraries, where
the switch libraries are prepared with different design objectives
and design constraints. The experimental results show that the
power consumption and the area of optimal topologies can be
saved by up to 67.1% and 27.2%, respectively, by the proposed
method with negligible synthesis time overhead.

I. INTRODUCTION

On-chip communication is becoming more and more crucial
to the overall system performance due to the growing size of
SoCs and the adoption of data-intensive applications, such as
HD-videos and 3D games. The shared bus architecture and
its variants, such as hierarchical buses with bridges, faced
their limitation on supporting the large size and the complex
communication requirements of contemporary SoCs.

Bus matrix (also called crossbar) is nowadays one of
the most popular solutions as a backbone communication
resource to handle the large amount of on-chip traffics of high-
performance SoCs. Its point-to-point nature enables multiple
concurrent communications among the IPs, but it also accom-
panies large power and area overhead in addition to the speed
limitation mainly due to the internal wires and arbiter logics.
Several methods were proposed to minimize these drawbacks
by clustering IPs and/or eliminating unnecessary connections
in the crossbar [1]–[5]. However, they also showed a limitation
on the scalability since the single crossbar needs to connect
the ever increasing number of IP clusters, i.e. local networks.

To tackle the limitation, on-chip interconnection net-
works composed of multiple switching components, so called
Network-on-Chip (NoC), were proposed. Also, many of NoC
topology synthesis methods have been proposed [6]–[8], [10]–
[17]. These methods require the preparation of a switch library
which includes all possible switch configurations and their
implementation costs such as delay, area, and power. More
precisely, a switch configuration (i.e. a certain number of
in/output ports and data width) is characterized for a set of
metrics such as area, delay, and power consumption by syn-
thesizing it for a given gate-level library. The information from
the characterization (implementation cost) is used in evaluating
the topologies during the topology synthesis. Generally, these
methods perform the characterization of all the switches in the
library with a common design objective and common design
constraints. In other words, they assume that the switches
comprising a topology will be implemented in the same way.
For instance, the switch library in [6] consists of the switches
which were optimized for minimizing delay. On the other
hand, the switches used in [7] were commonly optimized for
minimizing area with a minimum frequency constraint.

Such assumption may guide the topology synthesis to
choose a sub-optimal topology by ignoring the combinations
of the switches from the implementation perspective. In our
work, we aim at tackling this problem by considering various
switch implementations. An analogy can be found in logic
synthesis. It requires a gate-level design library which includes
several implementation choices for a single logic function
(e.g. several 2-input NAND gates with different delays, areas,
and powers). The technology mapping utilizes these gates
to find the optimal implementation combination of gates for
the minimized logic expressions. To the best of the authors’
knowledge, this is the first work which tackles the diverse
implementation possibilities of switches and applies them to
the on-chip network topology synthesis.

The rest of this paper is organized as follows. We first
summarize the previous works in Section II, and then present a
motivational example of our work in Section III. In Section IV
and Section V, we describe the details of the proposed method
and show its effectiveness through the extensive experimental
results, respectively. We conclude our work in Section VI.
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Library I: minimum delay

Size Delay (ns) Area (mm2)

2x2 1 0.022

3x3 2 0.027

Library II: minimum area

Size Delay (ns) Area (mm2)

2x2 3 0.015

3x3 4 0.022

Library III: intermediate

Size Delay (ns) Area (mm2)

2x2 2 0.018

3x3 3 0.023

(a) Libraries for various implementations
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(c) Using Library II only
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(d) Using all libraries

Fig. 1: An NoC topology synthesis example w/ and w/o considering the implementation diversity.

II. PREVIOUS WORKS

Crossbar-based solutions have been proposed to overcome
the performance limitation of on-chip shared bus architecture,
by providing a dedicated bus to each slave. The works in [1]–
[5] proposed the central crossbar minimization methods by
clustering some masters and slaves into local subsystems and
eliminating unnecessary paths inside the crossbar. However,
these solutions are not free from the limitation of crossbar,
since the growing system size will enlarge the central crossbar
and its speed will become unacceptably slow. These methods
are less sensitive to the problem raised in this work, since
there is only a single crossbar.

To overcome the limitation, the cascaded crossbar network
and the automatic synthesis methods were proposed. In this ar-
chitecture, the central crossbar is replaced by multiple smaller
ones which are connected to each other. In [10], [11], they
assume that the network is composed of the switches of a
single size, for example, all switches are 5-ported. The power
consumption is modeled at each input/output port with linear
regression with respect to the packet injection ratio. Even
though a single switch configuration builds a topology, differ-
ent implementations of switches may yield a better topology,
hence these methods can be benefited by the proposed method.

In [6]–[8], they consider topologies which consist of various
switch configurations. For this purpose, they prepare a switch
library by synthesizing all possible switch configurations.
Also, their implementation costs were annotated through static
timing/power analysis. Similar switch libraries were also used
in [12]–[17]. These methods did not consider the fact that
a switch can be implemented in many different ways, e.g.
fastest or most area/power-efficient ones. These methods can
be largely improved by the proposed method, since there
are more possible implementation combinations of switches
compared to the aforementioned methods.

Unlike the existing methods, we characterize a switch for
its various implementations and take advantage of it in the
topology design. Our method is orthogonal to the topology
synthesis method, i.e. it can be easily plugged into most of

the existing topology synthesis algorithms.

III. MOTIVATION

The on-chip network design is to integrate the IPs such
that their communication requirements such as bandwidth and
latency are supported by the network, while minimizing the
target design cost such as delay, area, and power. Although
difference exists to some extent, the existing iterative on-chip
network topology synthesis methods usually consist of the
following steps - 1) generate candidate topology, 2) evaluate its
cost, 3) update the up-to-now solution if the current candidate
is the best, and 4) iterate until there is no candidate left. In this
procedure, the topology is evaluated with the pre-characterized
implementation costs of the switches. In the existing methods,
a switch of a certain configuration is characterized only for
a single possible implementation, e.g. a 5x5 switch has delay
and area values of 5ns and 0.09mm2, respectively. However, a
switch can be implemented in various ways. For this reason,
characterizing a switch with only a single set of metrics may
lead the topology synthesis to finish with the sub-optimal
topology.

Fig. 1 shows an example of the topology synthesis with the
single switch library and multiple switch libraries. In Fig. 1,
the ‘master’ nodes are the initiators of the communications
(e.g. CPUs), while the ‘slave’ nodes are the targets of the com-
munications (e.g. memories). The edge represents the physical
link between the two nodes and the numbers annotated on
the edges are the required bandwidths between the connected
nodes in MB/s. Suppose that we are to optimize the network
for a system so that the area consumed by the switches is
minimized. Assuming that the link having the bandwidth of
1200MB/s is the most heavily loaded one in the network
and the link is 32bit-wide, the required frequency is 300Mhz.
Fig. 1a shows the libraries which are characterized for the
different implementation objectives. Library I has the imple-
mentation costs of the switches when they are optimized for
minimizing the delay (for short, fastest implementations and
denoted as ‘Fastest’). The switches in Library II are optimized



for minimizing the area (for short, smallest implementations
and denoted as ‘Smallest’). Similarly, the switches in Library
III are optimized for an intermediate point of the other two
libraries. Fig. 1b and 1c show the synthesized topologies
using only Library I and Library II, respectively. In Fig. 1b
(‘Fastest’), both 2x2 and 3x3 switches satisfy the required
frequency and thus the network can be constructed with one
3x3 switch and one 2x2 switch, yielding the area of 0.049mm2.

If only the smallest implementations are considered, a 3x3
switch cannot satisfy the required frequency since its delay
is 4ns, so the network must use three 2x2 switches to satisfy
the frequency requirement as shown in Fig. 1c. Although the
network in Fig. 1c uses more switches than that in Fig. 1b, the
total area is smaller, since 1) it uses only 2x2 switches and 2)
its area in Library II is smaller than that in Library I.

These two cases represent the conventional topology synthe-
sis with a single switch library. They also show that a switch
library largely affects the quality of the topology. The compar-
ison of Fig. 1b and 1c may be intuitive, since the ‘Smallest’
library yields a better topology than the ‘Fastest’ library from
the area perspective. Also, people may believe that Fig. 1c
would be the best topology from the area perspective, since
it is from the ‘Smallest’ library. However, the example in
Fig. 1d outperforms the topology shown in Fig. 1c thanks
to the topology synthesis with multiple libraries. In Fig. 1d,
all three libraries are considered for topology synthesis. A
3x3 switch and a 2x2 switch are picked from Library III and
Library II to create a minimum area topology, yielding the
area of 0.038mm2. All single switch library including Library
III cannot beat the result of multiple libraries in this example.

The single library approach becomes more complicated
when the design objective is power, since the power mini-
mization of a switch should be accompanied with its operating
frequency (or delay) constraint. However, the target operating
frequency of a switch cannot be intuitively decided since
the network frequency is available only after the topology is
determined. On the other hand, the power cost of a topology
only can be evaluated from the power cost of switches,
causing a cyclic dependency between the switch library and
the topology synthesis. In other words, it is hard to prepare a
switch library optimized for power unlike the switch library for
area. The proposed method resolves this issue by considering
multiple libraries which are dynamically accessed during the
evaluation phase of topology candidates. The details will be
presented in the following section.

IV. PROPOSED METHOD

A. Overview

This paper concerns the problem of the topology synthesis
for application-specific NoCs, as in [6]–[8], [10]. Fig. 2
shows a typical flow for NoC topology synthesis. Given the
communication requirements and the placement of IPs, this
synthesis flow iteratively generates topology candidates and
evaluates them in terms of some specific objective(s) such as
area and/or power consumption. The flow continues until no
more candidate is left or a given termination condition is met.
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Fig. 2: A generic NoC synthesis flow

The focus of this paper is on how to evaluate topology
candidates, rather than on specific algorithms to generate them.
In particular, we are interested in evaluating topologies of
switches, not links. As indicated in Fig. 2, the conventional
approaches evaluate switches by using a simple library, in
which each switch is characterized only once for a single
implementation. In contrast, the proposed method employs a
more sophisticated library, in which a switch is characterized
multiple times for various implementations. By utilizing this
library of multiply characterized switches, we aim at finding
the optimal implementation for each switch in the network.

B. Characterizing Switches for Multiple Implementations

Fig. 3 presents the proposed switch characterization flow.
The first step of this flow is to generate the RTL code that im-
plements a given switch configuration. Then, the flow is split
into two branches. One branch is for synthesizing the switch
with the objective of minimizing its delay without any power
and area constraints. The other is to synthesize the switch
with the objective of minimizing its area without any delay
constraint.1 Each of the two synthesis results is then fed into
the typical ASIC analysis flow with either pre- or post-layout
accuracy. At the completion of timing and power2 analysis, the
minimum and maximum delays (i.e. mindelay and maxdelay)
of the switch are available. A synthesis script is generated
with a delay constraint between mindelay and maxdelay. This
constraint can be selected randomly or within a fixed interval.
The RTL code is then synthesized with the selected delay
constraint, followed by timing and power analysis with either
pre- or post-layout accuracy. It is designer’s choice how many
implementations of a switch configuration are produced.

1We also tried another branch for minimizing power consumption. Accord-
ing to our experiments, this branch produces almost identical results to that
by the branch for minimizing area and is thus omitted in the flow.

2For the power characterization of switches, we adopt the switch power
modeling used in [9].
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Fig. 4: An example of NoC topology synthesis.
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Fig. 3: Proposed switch characterization flow

C. Topology Synthesis Considering Multiple Switch Imple-
mentations

Here we explain how to apply the proposed switch char-
acterization methodology to the NoC topology synthesis flow.
We consider three different policies for exploiting the imple-
mentation diversity of switches.
• The post replacement policy (also called ‘Post’) is to

replace the switches in the topology synthesized with the
conventional characterization with their best fitting implemen-
tations. Since the implementation replacement occurs after the
topology is determined, the network topology is not changed.
• The re-synthesis policy (also termed ‘Resyn’) progresses

as follows: First, the synthesis is performed with the con-
ventional switch characterization. Next, the best fitting im-
plementations of the switches are selected for the frequency
determined by the topology. Lastly, the synthesis is performed
again with the switch implementations selected in the previous
step. Since this policy performs the synthesis twice, the final

topology may differ from that produced in the first step.
• The in-process replacement policy (also called ‘In-

process’) is to find the best fitting implementations for every
topology candidate during the topology synthesis. That is, for
a topology candidate which is being evaluated, each switch in
the topology is evaluated for all of its implementations and is
matched to the best one.

Although the time for switch evaluation grows propor-
tionally with the number of implementations considered, it
is normally not the computational bottleneck in the whole
topology synthesis process, as will be shown in Section V.

D. An Example
Fig. 4 shows three different synthesis results for one of

our test cases (mobile mmp; see Section V) whose synthe-
sis objective is minimizing power consumption. Fig. 4a is
the synthesis result with the conventional characterization
where the switches are characterized for implementations
having the minimum delay (this implementation is thus de-
noted as ‘Fastest’). The frequency determined by the topol-
ogy is 220.75Mhz, and the power consumption is 3.20mW.
Fig. 4b shows the result after performing the post replacement
(i.e. Fastest followed by Post) where the switch0 and switch1

are replaced with the implementations that are the most power-
efficient at 220.75Mhz. The power consumption is reduced
from 3.20mW to 2.72mW by the post replacement. Lastly,
Fig. 4c presents the result with the in-process replacement
policy used.3 The only topological difference among the alter-
natives is the location of the ‘peri’ node, which is connected
to switch0 in Fig. 4a and 4b and to switch1 in Fig. 4c.
The in-process replacement resulted in the best result with
the power consumption of 2.67mW. However, with only the
fastest implementations, the topology in Fig. 4c consumes
more power (3.32mW) than that in Fig. 4a, and this case is
therefore discarded by the synthesis algorithm.

V. EXPERIMENTAL RESULT

A. Settings
For the switch characterization, we designed an RTL gen-

erator for an output-registered switch, whose interface is

3Fastest+Resyn produced the same result as this application.



compatible with the AMBA3 AXI protocol [18]; the address
and data widths used are both 32bit. We assume circuit-
switched networks where only the output ports (i.e. slave port)
of the switches are registered. We generated the RTL code of
switches sized from 1x2 to 12x12, synthesized the code with
Synopsys Design Compiler and performed pre-layout timing
and power analysis with Synopsys Primetime. The delay
range (i.e. the interval between the minimum and maximum
delays of a switch) was divided by 0.5ns intervals; e.g. if the
difference between the minimum and maximum delays is 5ns,
there would be 9 intermediate implementations in total.

For the topology candidate generation and design space
exploration, we used a topology synthesis method similar to
[6] with enhanced topology representation and exploration
techniques. The details of the topology synthesis method used
is irrelevant and is thus omitted; the proposed idea of using
multiple switch implementations is widely applicable to many
other existing topology synthesis methods.

We tested the proposed idea with five realistic applications
and two very large synthetic applications. The first application
(mpeg4decode) is from [14], the second (multimedia soc)
from [7], and the third to fifth (mobile mmp, mobile ap, and
game soc) from [9]. The two synthetic applications (45x10
and 65x14) were generated by combining two or more of the
above realistic applications. Each application was synthesized
with the objective of minimizing power, area or a weighted
sum of power and area.

The switch characterization was performed on a virtual
machine of 512MB memory without multithreading, and the
topology synthesis was done in the host machine that has a
2.5Ghz Core2Quad processor and 2GB memory. The entire
characterization took about a week, but we expect that the
time can be greatly reduced by parallelization.

B. Results

Fig. 5 shows the NoC topologies synthesized by the conven-
tional and proposed switch characterization methods with the
three different synthesis objectives mentioned in Section V-A.
The bars marked as Fastest and Smallest represent the results
from using the conventional algorithms, and all the other bars
are the results from using the proposed approach.4 The height
of a bar represents power consumption normalized to the
height of the bar representing In-process.

Presented in Fig. 5a is the result when the synthesis objec-
tive is minimizing power consumption. It is worth noting that
Fastest shows lower power consumption than Smallest (except
mobile ap and the failed cases of Smallest), even though
each switch implementation used in Smallest is typically more
power-efficient than that in Fastest. The reason is that Smallest
uses a larger number of smaller switches since the switch
implementations in Smallest are much slower than those in
Fastest. Smallest uses five switches while Fastest uses only
two for mpeg4decode. This tendency becomes more prominent

4Regardless of the objective used, Smallest failed to find a feasible solution
for game soc, 45x10 and 65x14, and thus Smallest+Post and Smallest+Resyn
could not be performed; the corresponding bars do not appear in the plots.

as the application synthesized has heavier bandwidth and thus
requires a higher network clock frequency. The mpeg4decode
application has the highest bandwidth and requires a clock
frequency of at least 340.75Mhz whereas mobile ap has the
lowest bandwidth requiring a clock frequency of 157.5Mhz.

The Post policy achieves considerable power saving up
to 15.0% (for mobile mmp) when combined with Fastest,
while the power saving is only up to 3.9% when combined
with Smallest. The reason is that the implementations used
in Fastest have a great amount of margin to be optimized for
power consumption since they are initially optimized for speed
rather than for power, while the implementations in Smallest
are already more power-efficient than those used in Fastest.

The Resyn policy can even further reduce the power con-
sumption by up to 2.0% with respect to Post (for mobile mmp)
when combined with Fastest. When combined with Smallest,
the power saving by Resyn is much larger than the power sav-
ings by Resyn combined with Fastest, showing up to 67.1% of
reduction (for mpeg4decode). This power saving comes from
reducing the number of switches during the second synthesis.
The In-process policy does not produce better results than the
Resyn policy in terms of power minimization. Overall, Resyn
can reduce power consumption by up to 16.6% (mobile mmp)
and 9.5% on average in comparison with Fastest. Compared
with Smallest (excluding the failing cases), Resyn can save
power by up to 67.1% (mpeg4decoe) and 33.5% on average.

Fig. 5b shows the result when the synthesis objective is
minimizing area. The tendency observed is similar to that
in Fig. 5a, but we can find the benefit of adopting the In-
process policy for multimedia soc, mobile mmp, and 45x10.
In-process can save area by up to 21.2% (multimedia soc) and
14.6% on average compared with Fastest, and by up to 27.2%
and 10.3% on average over Smallest.

Fig. 5c presents the result when the synthesis objective is
to minimize a weighted sum of area and power, namely 0.5×
area (mm2)+0.5×power (mW). In this case, In-process shows
better performance than Fastest+Resyn for mobile ap.

Since we evaluate switches in their multiple implemen-
tations, the overhead in synthesis time may be of concern.
However, according to our experiments, the post replacement
took less than 0.1 seconds for all the applications, while
the entire synthesis time ranged from 2.5 (mpeg4decode) to
1488 seconds (65x14). Fig. 6 shows the synthesis time of
Post, Resyn, and In-process, each of which is combined with
Fastest. The objective used is power minimization, and the
bars are normalized to the height of Fastest+Post. Intuitively,
In-process should incur the greatest overhead since it needs
to evaluate a switch for all of its implementations. However,
Resyn showed the longest synthesis time. The reason is that
Resyn should perform the synthesis twice with different switch
characterizations. In-process only incurs negligible overhead
compared with Post.5 This result confirms that the switch

5Interestingly, for mobile ap and 45x10, the synthesis time of In-process
is shorter than that of Post, which is theoretically impossible. We conjecture
that this is due to some unexpected variabilities in experiments such as OS
process scheduling events during synthesis.
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evaluation step is not the computational bottleneck of the
whole topology synthesis, as mentioned in Section IV-C.

VI. CONCLUSION

We proposed a methodology to consider multiple
implementations of switches for NoC topology synthesis.
Most existing approaches aim at determining the network
topology of NoCs without considering diverse implementation
possibilities of switches and may thus produce suboptimal
solutions. By adopting the proposed technique, the burden
on switch characterization may increase. However, the
characterization step is done only once, whereas the NoC
synthesis typically needs to be done multiple times during the
front- and back-end design iterations. The effectiveness of our
approach was demonstrated by the experiments performed on
realistic and synthetic examples. We observed that the propose
in-process replacement policy can save power and area by up
to 67.1% and 27.2%, respectively, over conventional methods,
with negligible computational overhead.
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