IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.4 APRIL 2007

875

[LETTER

Scenario-Aware Bus Functional Modeling for Architecture-Level

Performance Analysis

Eui-Young CHUNG', Member, Hyuk-Jun LEE'", and Sung Woo CHUNG "'7®, Nonmembers

SUMMARY We present a scenario-aware bus functional modeling
method which improves the accuracy of traditional methods without sac-
rificing the simulation run time. Existing methods focused on the behav-
ior of individual IP (Intellectual Property) components and neglected the
interplay effects among them, resulting in accuracy degradation from the
system perspective. On the other hand, our method thoroughly considers
such effects and increases the analysis accuracy by adopting control signal
modeling and hierarchical stochastic modeling. Furthermore, our method
minimizes the additional design time by reusing the simulation results of
each IP component and an automated design flow. The experimental results
show that the accuracy of our method is over 90% of RTL simulation in a
multimedia SoC (System-on-Chip) design.

key words: bus functional model, bus, stochastic, performance, inter-play

1. Introduction

Reducing the time-to-market is a critical issue in SoC
(System-on-Chip) design due to the rapid growth of design
complexity. A viable solution is a platform-based design by
reusing existing IP components [1], [2]. One of the issues in
platform-based design is the on-chip communication archi-
tecture design to meet the bandwidth and latency constraints
required by the IP components consisting of the platform
[2]-[4]. Traditional RTL simulation is too slow to be used
for this purpose and several approaches have been proposed
instead. Bus Functional Modeling (BFM) simply models the
traffic pattern of each IP component in transaction-level and
connects them to communication architectures for several
types of performance analysis [4]. The trace-driven model
is widely used for its simplicity, but it requires a large disk
space to maintain its database [4]. Furthermore, it is not
flexible enough to analyze the performance of a SoC for var-
ious operation modes, since the trace only reflects a special
operation mode that an IP component can perform. Another
approach is using a stochastic model based on the proba-
bilities of traffic types [5]. This approach is more flexi-
ble than the trace-driven method, but its accuracy is lower
than the trace-driven method for a specific operation mode.
More importantly, these approaches pay little attention on
the inter-play effect of IP components in BFM based perfor-
mance analysis.

Manuscript received June 26, 2006.
Manuscript revised October 4, 2006.
Final manuscript received January 4, 2007.
"The author is with Yonsei University, Seoul, Korea.
""The author is with Cisco Systems Incorporation, CA, USA.
" The author is with Korea University, Seoul, Korea, Corre-
sponding author.
a) E-mail: swchung@korea.ac.kr
DOI: 10.1093/ietfec/e90-a.4.875

Since some IP components are closely related due to
their nature, the accuracy of overall system performance
analysis critically depends on their interactions. Moreover,
an IP component can behave in several different ways. For
example, a multi-format video decoder will produce differ-
ent traffic patterns depending on the decoded video format.
In this case, each video format will be the basic unit to define
the IP component behavior. Also, we call each different be-
havior of an IP component operation mode. It is typical that
a controller determines the operation mode and operation
start time of each IP component. It is necessary to model
them for exact performance analysis. Another example can
be found when private signals of an IP component initi-
ate the operation of other IP components for the same rea-
son. One promising method to attack this issue is System-C
based transaction-level modeling [2],[3]. In this method,
the interface with on-chip communication fabrics includ-
ing bus is modeled in a cycle-accurate or cycle-approximate
manner. The accuracy of simulation is achieved at the cost
of simulation speed. For accurate performance analysis,
we need to model each IP component in micro-architecture
level with reasonable timing information. Such requirement
increases the modeling effort and thus its practical use is
limited.

The method proposed in this paper improves the short-
comings of traditional BFM methods by considering the
inter-play effect among IP components, but our method does
not require a large amount of modeling effort by reusing the
simulation results collected during the verification of each
IP. Each BFM includes several traffic generators correspond-
ing to various possible operation modes. An operation mode
is dynamically selected by other BFMs or designer spec-
ification to reflect the operation scenario intended by de-
signers, thus the BFMs in our method model not only bus
transactions, but also control signals to capture the inter-
dependency of IP components. The traffic generator for
each operation mode can be modeled using a trace-driven
method or a stochastic method depending on the designer’s
choice. In the stochastic method, we maximize its accu-
racy by extracting the state transition diagram from the sim-
ulation trace. Each line in the trace corresponds to each
transaction and the states are created by grouping the trace
lines based on their interval (transaction interval) and burst
length. Each state generates traffic patterns based on these
two parameters and the transition probability from state A
to state B is the state transition count from state A to state B
over the total transition count from state A when we replace

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers

876

the trace lines by the mapping states.

The method proposed in this paper does not count on
a specific bus protocol, nor a specific modeling language.
We use AMBA AHB from ARM and Verilog HDL as an
exemplary case. In Sect.2, we will describe the details of
our method and provide the experimental results to show its
effectiveness in Sect. 3 followed by a conclusion in Sect. 4.

2. Scenario-Aware Bus Functional Model
2.1 Bus Functional Model Structure

The IP component consists of two parts — computation and
communication as shown in Fig. 1.

The computation part processes are in charge of data
processing and communication part transfers data through
the communication fabric. Communication part is common
to every BFM for a given bus protocol. To hide the details
of signaling, we adopt transaction-level modeling and only
the high level abstraction is visible to the computation part.
Computation part includes a series of read/write transactions
which are delivered to the communication part. The final
outputs from communication part are traffic patterns similar
to those from RTL IP component. In addition to the signals
specified by a given bus protocol, we introduce virtual con-
trol signals to reflect the inter-dependency of BFMs. The
control signals are fed from other masters, slaves, or de-
signer specification. Also, some control signals are going
out if necessary. With these control signals, we can model
various operation scenarios which are critical from a perfor-
mance perspective.

2.2 Control Signals for Bus Functional Model
Figure 2 shows an example of BFM behavior depicted in

Fig. 1. In this example, we introduce three types of control
signals.

Control

Computation

Bus

Interface
Communication ”

Fig.1 BFM structure.

il\iti—‘

active

e R OO~ K<

Burst transactions

Operation mode 0 Operation mode 1 Operation mode 2

Fig.2 Anexample of BEM behavior.

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.4 APRIL 2007

The first type of control signal, “init” triggers the start
of BFM and the triggering time is specified by a designer
in a configuration file. Then, the BFM generates traffic pat-
terns defined by the computation part which can be a trace
or a stochastic model extracted from RTL simulation trace.
After completing the pattern generation, BFM stays in idle
state and waits for other control signals. Next, the second
type of control signal “active” triggers BEM and then it gen-
erates traffic patterns again. Note that the traffic pattern at
this time is different from the previous one, since BFM per-
forms a different operation specified by the control signal.
Thus, BFM may have multiple pattern generators in compu-
tation part and they are dynamically selected by the specified
control signals.

Finally, we can evaluate whether the communication
architecture satisfies real-time constraints in an operation
scenario defined by BFMs. In Fig. 2, after completing the
second operation mode, BFM is triggered again by the third
type of control signal “sync.” The signal “sync” has a pe-
riodic nature and a BFM should complete the fixed amount
of transfers within the period which is given by a real-time
constraint. If BFM completes the transfers during the pe-
riod, it becomes idle and waits for the next activation by
“sync” signal. Otherwise, it transfers remaining data words
at the next activation. This situation occurs due to the bus
contention with other masters. The accurate modeling of
the inter-dependency of masters is especially crucial to ana-
lyze bus contentions. The operation scenario in Fig.2 is an
example. We can create various scenarios by ordering the
operation modes.

To summarize, we introduce three types of control sig-
nals. The first type of control signals initiates the opera-
tion of BFM and the second type is appropriate for sporadic
events or interrupts from other components. The third type
is intended for considering the real-time constraint given by
aperiodic signal. With these signals, we can model the inter-
dependency of IPs and it is possible to create various opera-
tion scenarios for accurate performance analysis.

2.3 Stochastic Model for Computation Part

Trace-driven method is one option to implement the com-
putation part. Its implementation is trivial and thus we omit
the details. The other method is stochastic modeling. Even
though the trace-driven method most accurately mimics the
behavior of a master, its low flexibility becomes an issue
when we explore the micro-architecture of master behavior.
The key parameters to characterize the transfer behavior are
transaction intervals and burst length. We build a state tran-
sition diagram for each operation mode and the state transi-
tion occurs in a probabilistic manner. First, we extract the
states from the RTL simulation trace by quantizing transac-
tion intervals. Transaction intervals are quantized into mul-
tiple groups and a state is assigned to each group. The res-
olution of quantization determines the number of states and
affects the accuracy of the model. Figure 3 shows an exam-
ple of state extraction from the simulation trace.

LETTER

ID time burstlength State 13

0 0 8 S0

1 10 8 S0

20 1 S0 23 @ @ 0
3 50 8 Sl

4 60 8 S0]

(a) A simulation trace. (b) State transition diagram.

Fig.3 A simulation trace and a state transition diagram.

Suppose that the quantization resolution is 10 time unit.
In this case, the transaction intervals ranging from O to 10
belong to the same group and the transaction interval froms
11 to 20 belong to another group and so on. In Fig. 3, trace
ID 0, 1, and 2 are in the same group because their transac-
tion interval is O or 10 (the transaction interval of trace ID 0
is 0.). Trace ID 4 is also in the same group for same reason.
Only trace ID 3 is in a different group because its transac-
tion interval is 30. For each group we assign a state and the
state transition probability can be computed as mentioned in
Sect. 1 (transition counts from state A to state B over total
transition counts from state A), after mapping state to each
trace ID. In this example, the transition probability from SO
to S1 is 1/3 as shown in Fig.3. For each state, we build
a state transition diagram for burst length. Typically, burst
length is a set of finite discrete numbers, thus we naturally
create states with the appearing burst length numbers in each
interval state. Similarly, we can extract the state diagrams
for the read/write access patterns as well as address access
patterns, even though we omit those in Fig. 3 for simplicity.

The transition probability is computed with the same
method used in interval state transition diagram. The out-
put control signals are also modeled in the same way if a
BFM needs to model it. To summarize, our stochastic model
consists of two levels of hierarchy. The upper level models
interval variation and the lower level models burst length
variation. Also, note that the transaction behavior is quite
regular in a single operation mode due to the limited inter-
vention of other control signals. In this case, we can achieve
high flexibility while maintaining high accuracy comparable
to trace-driven method.

2.4 Bus Functional Model Generation Flow

We show the BFM generation flow in Fig. 4. In the verifica-
tion step of each IP component, we insert an AHB transac-
tion monitor to collect the traces for BFM generation. The
database from the monitor and a design configuration file
are two inputs of our BFM generation tool. The database
includes the information similar to a simulation trace shown
in Fig. 3 for various operation modes. Supplementary infor-
mation is given by a design configuration file. BFM gener-
ator instantiates a communication part which is common to
every BFM and produces a stochastic model for each opera-
tion mode. Finally, it generates the control logic for control
signals.

Figure 5 shows an example of a design configura-
tion file. It specifies the information of control signals,

877

IP verification

RTL
IP component

Transaction _IB““_ Memory
Monitor

Trace DB

_— 5
Generator
BFM DB
Configuration

file

Fig.4 BFM generation flow.

INIT = (init, 1, 50)
ACTIVE = (active, 1, 30)
RTC = (sync, 1, 400, 200)
RW = READ
DATA_WIDTH = 32
ADDRESS = RANDOM
BURST LENGTH =8

Fig.5 Anexample of a design configuration file.

read/write mode, data width, address pattern, and burst
length of transactions. INIT and ACTIVE define “init” con-
trol signal and ““active” control signal, respectively. They
first define the triggering condition by the signal name and
its logic state, and then specify the operation start time of
connected IP components after the triggering condition is
met (50 cycles in case of INIT). RTC specifies a signal
which imposes a real-time constraint. It first defines the trig-
gering conditions with the signal name and its logic state,
and then specifies the value of real-time constraint in terms
of clock cycles followed by the amount of data to be trans-
ferred. If RW, ADDRESS, and BURST_LENGTH are not
specified, BEM generator produces a burst length state tran-
sition diagram mentioned in Sect. 2.3.

It is obvious that we can extract the signals which trig-
ger the operation modes from the IP’s external specification
and their logic values. On the other hand, the triggering
condition, the timing constraints (400 cycles), the amount
of data to be transferred (200 cycles), and read/write access
patterns are extracted from the system specification. For in-
stance, the timing constraint and the amount of data to be
transferred in the real-time constraint (RTC) description in
Fig. 5 are the requirements from the system perspective, re-
gardless of the corresponding IP’s performance. If the IP
cannot satisfy the system requirements, it will be reported
during the simulation. The experimental results shown in
Sect. 5 will address the performance analysis capability of
our method more in detail.

3. Experimental Results

We conducted a set of experiments for a SoC designed
for video processing systems to assess the impact of our

878

method. The target system consists of 16 master blocks
including ARM9 which controls the overall system. The
communication architecture is designed using AMBA2.0
AHB from ARM. The baseline communication architec-
ture is single-layer AHB. In other words, all IP blocks and
a memory controller are connected by a single AHB bus.
The target system basically adopts a shared-memory com-
munication scheme, thus the bus traffic is quite heavy and
the communication architecture design is one of major con-
cerns. The objectives of this experiment are as follows.
First, we compare the accuracy of our method against RTL
simulation and measure the speedup. Second, we need to
explore several architectural choices to meet the given per-
formance constraints with minimal effort. This is necessary
to appreciate the benefits of our method. For the first objec-
tive, we compared the average and worst-case transaction
latencies of IP blocks using our method to those from RTL
simulation, where worst-case transaction latency means the
longest latency among all observed latencies. We also im-
plemented a performance monitor to measure the transac-
tion latency of each IP block. The monitor is common to all
IP blocks, since they have a common bus interface. Table 1
shows the experimental results for four timing-critical major
blocks.

For other blocks not shown here, we observe the same
level of accuracy and the overall average is 91.4%. It is
worth to mention that the accuracy itself is over 90% and
its deviation is not large, while the simulation speedup is
more than 2500 in terms of CPS (Cycles Per Second). Such
high accuracy was possible thanks to taking into account
inter-dependency of IP blocks. Our method requires little
modeling effort by reusing the RTL simulation trace and au-
tomated design flow. We could conclude that the baseline
architecture is satisfying the given performance constraints
from the latency perspective.

We also investigated the bus contention of IP blocks
to exploit further performance improvement possibility. We
vary the number of bus layers or improve the bus arbitration
scheme. We measure the bus contention ratio which is de-
fined as the waiting time of each IP block over a total time
spent on data transfers. We measure the ratio using the per-
formance monitor mentioned above. The simulation results
show that the average bus contention ratio of all IP blocks is
16%, which is pretty low.

Table1 Accuracy of the proposed method against RTL analysis.
Average latency | Worst-case latency
IP blocks
accuracy accuracy
MPEG decoder 87.3% 91.9%
LCD controller 93.2% 93.7%
Post processor 89.5% 95.5%
Graphics accelerator 92.1% 100%
Average 90.5% 95.3%

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.4 APRIL 2007

Finally, we examined the data transfers of IP blocks
constrained by real-time performance. In this simulation,
we do not change the overall architecture, but we optimize
the data buffer size of each IP to avoid underflow or over-
flow due to the violations of real-time constraints. We need
a buffer for the remaining data when the data cannot be fully
transferred for the given timing constraint and the buffered
data should be transferred as shown in Fig.2 (operation
mode 2). However, it is not easy to determine the size of
buffer due to the unpredictable inter-dependency of other
IP blocks. From this experiment, we could found that the
MPEG decoder violates the real-time constraint for 10% of
total transfers and the maximum remaining data size is 5%
of total data amount per transfer. This information is very
important to avoid the real-time constraint violation or over-
design with a large buffer size.

4. Conclusion

We propose a scenario-aware bus functional modeling by
considering the inter-play effect of IP blocks. Also, our
method provides a stochastic method to model the computa-
tion part precisely. With our method, we could achieve over
90% accuracy for a SoC for video processing systems, while
its speedup is over 2500 against RTL simulation. Ws also
show we can apply it to determine several design choices —
number of bus layers, arbitration scheme, and buffer size
of each IP. Our method minimizes the modeling effort by
reusing the RTL simulation trace and an automated design
flow.

Acknowledgments

This work was partially supported by grant No. R01-2006-
000-10156-0 from the Basic Research Program of the Ko-
rea Science & Engineering Foundation, by IT R&D Project
funded by Korean Ministry of Information and Communi-
cations, and by IDEC (IC Design Education Center).

References

[1] A. Sangiovanni-Vincentelli, L. Carloni, FD. Bernardinis, and M.
Sgroi, “Benefits and challenges for platform-based design,” DAC,
pp-409—414, 2004.

[2] S. Brini, D. Benjelloun, and F. Castanier, “A flexible virtual plat-
form for computational and communication architecture exploration
of DMT VDLS modems,” DATE, pp.164-169, 2003.

[3] J. Um, W.-C. Kwon, S. Hong, Y.-T. Kim, K.-M. Choi, J.-T. Kong, S.-
K. Eo, and T. Kim, “A systematic IP and bus subsystem modeling for
platform-based system design,” DATE, pp.560-564, 2006

[4] K. Lahiri, A. Raghunathan, and S. Dey, “System-level perfor-
mance analysis for designing on-chip communication architecture,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.20, no.6,
pp.768-783, 2001.

[5] S. Kim, C. Im, and S. Ha, “Schedule-aware performance estima-
tion of communication architecture for efficient design space explo-
ration,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.13,
no.5, pp.539-552, May 2005.

