
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008 1969

Energy and Performance Optimization of
Demand Paging With OneNAND Flash

Yongsoo Joo, Member, IEEE, Yongseok Choi, Member, IEEE, Jaehyun Park, Student Member, IEEE, Chanik Park,
Sung Woo Chung, Member, IEEE, Eui-Young Chung, Member, IEEE, and Naehyuck Chang, Senior Member, IEEE

Abstract—New fusion memory devices consisting of multiple
heterogeneous memory components in a single die or package
offer efficient ways to optimize embedded systems in terms of
energy, performance, and cost. Samsung Electronics recently an-
nounced the OneNAND fusion memory, in which a NAND flash
array is integrated with dual SRAM buffers to provide a NOR-type
I/O interface. OneNAND has the low cost and large capacity
of a NAND flash but also permits eXecution-in-Place (XIP) like
a NOR flash. The deployment of such devices requires careful
system-level resource management because of their impact on
energy consumption and performance, and existing memory op-
timization techniques, such as the demand paging used with NAND
flash, may no longer be appropriate for systems with a fusion
memory. We introduce a new online demand paging scheme that
fully exploits the XIP capability of OneNAND flash by classifying
pages as load preferred (residing in the on-chip SRAM) and
XIP preferred (accessed directly from the OneNAND flash and
discarded after use). This achieves, on average, a 26% reduction
in energy consumption and a 19% increase in performance, com-
pared with conventional NAND flash demand paging.

Index Terms—Demand paging, eXecute-In-Place (XIP), flash
memory, OneNAND, page allocation, page replacement.

I. INTRODUCTION

THE ULTIMATE memory device for portable applications
should offer balanced read and write performance, low

cost, large capacity, low power consumption, and nonvolatility.
In portable applications, read and write performance and non-
volatility are equally important in devices that aim to replace
magnetic disks with their heavy and fragile mechanical com-
ponents. Such a memory device would allow a system to have
a single memory component. Unfortunately, after decades of

Manuscript received December 24, 2007; revised April 8, 2008. Current
version published October 22, 2008. This work was supported by Samsung
Electronics. An earlier version of this paper was presented at the International
Conference on Hardware/Software Codesign and System Synthesis 2006 [1].
This paper was recommended by Associate Editor M. Poncino.

Y. Joo, J. Park, and N. Chang are with the Department of Electrical
Engineering and Computer Science, Seoul National University, Seoul 151-742,
Korea (e-mail: ysjoo@elpl.snu.ac.kr; jhpark@elpl.snu.ac.kr; naehyuck@elpl.
snu.ac.kr).

Y. Choi is with the Digital Media R&D Center, Samsung Electronics, Suwon
442-742, Korea (e-mail: yongseok07.choi@samsung.com).

C. Park is with the Memory Division, Samsung Electronics, Hwaseong
445-701, Korea (e-mail: ci.park@samsung.com).

S. W. Chung is with the Division of Computer and Communication Engineer-
ing, Korea University, Seoul 136-713, Korea (e-mail: swchung@korea.ac.kr).

E.-Y. Chung is with the School of Electrical and Electronic Engineering,
Yonsei University, Seoul 120-749, Korea (e-mail: eychung@yonsei.ac.kr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2006081

semiconductor evolution, such a device is not yet available, and
the current practical solution is to combine a fast but volatile
RAM with a nonvolatile user-programmable memory such as a
flash memory. Next-generation memories such as phase-change
RAM and ferroelectric RAM may take us closer to a single-
memory system, but they are not in mass production stages yet,
and their performance cannot meet that of current RAMs.

Commercial portable embedded systems are highly opti-
mized in terms of cost, and thus, both the die size of the chips
and the chip count are crucial. Recently, systems-on-a-chip
(SoCs), equipped with a microprocessor core, cache memory,
SRAM, and even flash memory and peripherals, have been
widely used to realize small systems cost-effectively.1 The on-
chip SRAM size directly affects the die size and thus the cost of
an SoC, making optimization of the SRAM footprint a signifi-
cant problem, which is exacerbated by the increasingly capable
application programs demanded by users and by functionality
such as digital rights management (DRM), which is now an
important part of marketing and service strategies. Moreover,
the requirement for unified services from high-end to low-end
devices means that even entry-level systems have to support a
full range of features.

Flash memory is cheaper than SRAM, but its extremely bad
write performance restricts its use to read-only applications or
those in which few writes are required. The applications of
flash memory are effectively orthogonal to those of volatile
RAMs, and the devices are not interchangeable. However,
appropriate use of flash memory can mitigate the demand
for SRAM. There are two types of flash memories: NOR and
NAND. The NOR flash allows random access and therefore
supports direct code execution (XIP: eXecute-In-Place), which
can significantly reduce the requirement for on-chip SRAM
without additional optimization. Nevertheless, modern designs
for cost-effective portable systems often use cheap NAND flash
to store large programs and data. However, NAND flash only
allows page access, so that programs stored in NAND flash must
be uploaded to the on-chip SRAM before execution, and XIP is
not possible. Code shadowing, in which all the pages required
by the program are uploaded to the on-chip SRAM in advance,
is commonly used to mitigate this problem, but this does not
help reduce the size of the on-chip SRAM. An alternative to

1We do not consider off-chip SDRAMs, which are not suitable for low-cost
lightweight systems because of significant extra power consumption and system
complexity. The use of off-chip SDRAMs also raises other issues such as signal
integrity, which eventually result in a noticeable increase in cost.

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

1970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

code shadowing is demand paging, which does not involve
uploading all the code pages in advance. Instead, each page
of a program is uploaded on demand, and this can dramati-
cally reduce the on-chip SRAM size. However, the associated
page fault penalty is so severe that demand paging cannot be
used without a sophisticated method of handling page faults,
unless the size of the working set is smaller than that of the
on-chip SRAM.

One promising alternative to conventional flash memory
is currently being developed by semiconductor vendors. The
fusion memory is a combination of multiple heterogeneous
memories on a single die or chip. For example, Samsung
Electronics has announced a new fusion flash memory called
OneNAND [2] that combines the advantages of a NOR flash
and a NAND flash. Instead of a sequential interface, OneNAND

has random-access dual SRAM buffers. This random-access
capability offers great potential to enhance demand paging by
the use of XIP.

The use of a fusion memory requires careful consideration
because it changes not only the cost of an embedded system
but also its energy consumption and performance. However, no
in-depth system-wide analysis of the pros and cons of fusion
memories has yet been attempted. The issues are complicated:
For instance, conventional NAND flash demand paging cannot
utilize the XIP capability of the OneNAND flash, and the use of
its SRAM buffers for XIP is a challenge because there are only
two of them and they are small; all the data coming from the
NAND array must pass through an SRAM buffer.

In this paper, we introduce a new approach to demand paging
that fully exploits the XIP capability of the OneNAND flash
by selectively loading codes and data to the on-chip SRAM.
Infrequently used codes and data are not loaded into the on-
chip SRAM but directly accessed from the SRAM buffer of the
OneNAND flash. Since codes and data kept in the SRAM buffer
are soon overridden by the next page demand, an elaborate
management technique is required to avoid an excessive num-
ber of page faults. Our approach to demand paging emphasizes
the optimality of page allocation as well as of page replacement.
We have performed extensive simulations which demonstrate
that this method of demand paging has the potential to improve
the energy consumption and performance of systems incorpo-
rating OneNAND flash. Results show an average improvement
over conventional demand paging of 26% in terms of energy
consumption and a 19% reduction in execution time.

II. RELATED WORK

A. Demand Paging Optimization of Flash Memory

A systematic compiler-assisted approach to demand paging
for flash memory has recently been introduced [3]. In addition,
a code overlay technique based on synchronous data flow has
been proposed for low-end embedded systems that use NAND

flash [4]. There is also a subpaging technique for NAND flash
systems which tries to reduce the number of unnecessary write
operations by only flushing away dirty subpages [5].

Along with the performance and cost optimization of the
NAND demand paging, energy-aware demand paging has also
become an important topic. New page replacement policies for

NAND demand paging, such as clean-first least recently used
(LRU) [6], are based on accurate energy models of the paging
system.

Currently, more substantial modifications of the system ar-
chitecture are being attempted. Strong demand for further opti-
mization of the memory subsystems of embedded applications
motivated the development of the fusion memory, which con-
sists of heterogeneous memory devices, such as SRAM and
NAND flash, on the same die or package [2], [7]. A fusion
memory can replace a number of legacy memory components,
which is an effective way of reducing the chip count. Switching
to a fusion memory may be expected to impact the performance
of the system due to changes in the data paths, I/O capacitance,
etc. However, there has not yet been a full analysis of the
impact of using fusion memory on system energy consumption
and performance. In addition, existing memory optimization
methods, such as the demand paging algorithm used for NAND

flash, are not optimized for systems with a fusion memory.

B. Memory System Optimization Based on Data
Reuse Analysis

The method of demand paging for a OneNAND flash that
we propose is closely related to the problem of data reuse,
which has been addressed by many researchers [8]–[10], most
of whom have used profile-based offline analysis to determine
an allocation of memory objects, which then remains fixed
during program execution. However, more recent work [11],
[12] has sought to overcome the limitation of static schemes
by changing the allocation dynamically at runtime.

Previous approaches are similar to our scheme in the sense
that the target memory system is multilayered and the memory
allocation policy plays an important role in energy and per-
formance optimization. However, our scheme is differentiated
from earlier research because we use the OneNAND buffers and
XIP to change the memory hierarchy at runtime, whereas it
is fixed in previous approaches. Depending on the pattern of
accesses to a page, the OneNAND buffers may function as a
page buffer for transferring data from a secondary storage to
the main memory or as the main memory itself.

C. Page Replacement Policies

Conventional demand paging assumes a two-level memory
hierarchy that consists of a main memory and a secondary
memory. Since the secondary memory generally does not sup-
port random access, all pages are assumed to be accessed
from the main memory, and the energy consumption and per-
formance of conventional demand paging are primarily deter-
mined by the page replacement policy. Belady’s MIN [13],
which replaces the page that will be used farthest in the future,
is known to be the optimal offline solution. However, MIN
requires advance knowledge of the page request sequence,
which is not available in real systems. Over several decades, a
lot of effort has been put into the design of online algorithms
with the aim of matching the performance of MIN without
being able to predict the future.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

JOO et al.: ENERGY AND PERFORMANCE OPTIMIZATION OF DEMAND PAGING WITH OneNAND FLASH 1971

The LRU, first-in/first-out (FIFO), and least frequently used
(LFU) schemes are the oldest online page replacement policies.
LRU and FIFO are known to be the most efficient online
replacement algorithms, when assessed by competitive analysis
[14]. However, the performance of FIFO is much lower than
that of LRU for most real page request sequences. LRU is
the optimal policy under the LRU stack depth distribution
model, but it shows poor performance for sequential or cyclic
page access patterns. LFU cannot adapt to nonstationary page
request sequences since it does not consider their recency
at all.

There have been many attempts to mitigate the dis-
advantages of these policies, such as LRU-K [15], least
recently/frequently used [16], the low interreference recency
set [17], and the adaptive replacement cache [18]. However,
most of them require complicated operations to take place
at every memory reference, which makes their maintenance
cost too high for practical use. For this reason, CLOCK [19],
which is an approximate version of LRU, and its variants
are still used in most operating systems, including MVS,
Unix, Linux, and Windows, due to their low cost and good
performance.

D. Page Allocation Policies

Our method of demand paging with a OneNAND flash re-
quires not only a page replacement policy but also a page
allocation policy to decide whether to allocate the demanded
page to the on-chip SRAM or to the SRAM buffer of the
OneNAND flash. However, there has been less research on
page allocation, which is generally not required in conventional
demand paging, because all the missed pages are allocated to
the main memory.

The most recently frequently used (MRFU) policy [20] has
lately been suggested for multilevel cache management in
storage-area networks (SANs). MRFU automatically migrates
the most frequently used data chunks to a separate SAN cache,
such as a RAM disk, without any intervention by the SAN
administrator. MRFU moves these “hot” chunks from the disk
array to the SAN cache by tracking the access count of each
chunk. To do this, MRFU maintains a priority queue that con-
sists of a set of counters which records the accumulated number
of accesses to each chunk. In addition, MRFU has a “cooling”
mechanism that periodically decrements the page access coun-
ters to avoid the cache pollution effect; this approach is also
used in LFU with dynamic aging (LFUDA) [21]. The cooling
mechanism requires two parameters, which should be tuned
to suit the access pattern: They are called the cooling period
and the amount of cooling per period. Although MRFU has a
similar structure to LFUDA, these two policies select the most
and LFU data chunks in different ways. While it is adequate
for LFUDA to select the LFU chunk from the priority queue,
MRFU needs to determine a set of frequently used chunks.
Thus, MRFU requires an additional threshold parameter. A data
chunk is classified as frequently used if its access count exceeds
this threshold. Since the optimal threshold value will be affected
by a change of workload, a threshold adaptation algorithm is
beneficial [20].

Although the issue of data migration in a multilevel SAN
cache is similar to our problem, MRFU is not suitable for
demand paging with OneNAND flash for two reasons.

1) The page size in demand paging with a OneNAND flash
is orders of magnitude smaller than the data chunk size
in SAN applications. This increases the frequency with
which the priority queue must be updated, significantly
compromising the performance gain from using MRFU.

2) We found experimentally that the threshold adaptation
algorithm of MRFU fails to track changes to the page
access pattern in the context of our method of demand
paging. The adaptation algorithm of MRFU [20] works
by periodically incrementing or decrementing the thresh-
old by one. Although it works well for a workload that
changes slowly (over tens of minutes), in our environ-
ment, the page access pattern changes in a matter of
microseconds and keeps changing, which makes it im-
possible to use this type of algorithm.

In contrast to MRFU, our page allocation policy has a
constant time complexity, which is why it is suitable for demand
paging with OneNAND flash. We also propose a threshold
configuration scheme which can cope effectively with drastic
changes of page access pattern.

III. BACKGROUND

A. Demand Paging for Portable Embedded Systems

Flash memories can be classified into two types, NOR and
NAND, according to their structure and access method. Each
type has its own advantages and disadvantages [22]. While NOR

flash supports random access at relatively high cost per unit
capacity, NAND flash provides higher data density at a lower
cost per unit capacity but only supports page access. A host,
generally a microprocessor or a direct memory access (DMA)
controller, accesses the data in a NAND flash array through the
page buffer, so that the whole page has to be uploaded even if
only a single word is required.

There are three popular ways to enable program execution
from a flash memory, which are shown in Fig. 1. The simplest
method [shown in Fig. 1(a)] is to use a NOR flash, which
supports random access, and then to perform XIP directly from
the flash memory. This is easy to implement and makes a useful
saving in on-chip SRAM because it is not involved. The only,
and obvious, drawback is the high cost of the NOR flash, which
is certainly not economic for large amounts of user data. The
addition of a NAND would serve this purpose, but this runs
counter to modern trends, which favor the use of a single type
of flash memory in a system. As the amount of user data in
multimedia applications becomes larger and larger, this design
constraint suggests a NAND-only configuration.

Since a NAND flash does not support XIP, codes must be
copied to the main memory2 before execution. This can be
achieved by code shadowing, in which all the codes are copied

2The main memory might be an off-chip SDRAM, but we are focusing on
lightweight portable embedded systems and will assume that there is only an
on-chip SRAM.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

1972 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 1. Program execution from flash memory. (a) XIP: Directly execute codes from the flash memory. (b) Code shadowing: Copy the whole codes when
boot up. (c) Demand paging: Copy a missed page on demand.

from the NAND flash to the on-chip SRAM during system boot
[Fig. 1(b)]. Code shadowing provides good runtime perfor-
mance, owing to the short access time of the on-chip SRAM.
Indeed, in some high-performance systems, the codes in a NOR

flash are shadowed, just because NOR is slower than SRAM.
The primary disadvantage of code shadowing is that it requires
extra SRAM to accommodate all the codes. In addition, the
NAND flash is a wasted resource during execution, when it is
not used at all.

Demand paging overcomes these problems by copying parts
of the codes, called code pages, to the on-chip SRAM one by
one, when they are required [Fig. 1(c)]. This makes it possible
to execute a program that is larger than the on-chip SRAM,
and thus, the size of the on-chip SRAM can be dramatically
reduced compared with code shadowing. However, demand
paging involves extra latency, due to the page fault that occurs
every time that a required code page is not available from the
on-chip SRAM. This latency is not predictable, making demand
paging unsuitable for real-time tasks. Therefore, in practical
portable embedded systems, time-critical tasks are typically
pinned on the on-chip SRAM by code shadowing, and the rest
of the on-chip SRAM, which is called a page cache, is used
for demand paging of non-time-critical code such as DRM or
the user interface. Note that demand paging of read-only pages
is typically assumed in portable embedded systems [23], [24].
Demand paging of read–write pages is not generally adopted
in such systems because it accompanies with frequent write
operations to the flash memory, which significantly increase the
page fault latency and its energy consumption. It also requires
sophisticated wear-leveling and garbage collection mechanisms
[25], which can be a burden for lightweight portable systems.

The on-chip SRAM size is critical in making demand paging
effective. A small SRAM causes an unbearable number of page
faults, while an SRAM that is too big wastes money. The size of
the on-chip SRAM is necessarily determined during the design
of an SoC, and any subsequent increase requires refabrication
of the whole chip. However, there are likely to be many
software revisions during the life of an SoC. Demand paging
is usually able to accommodate the increase in code size that
accompanies most software revisions, but if a revision results in
any significant growth of the size of the working set, then even
demand paging can be defeated. The method of demand paging
that we propose for OneNAND flash can cope much better with
increases in the size of working set caused by code revisions, as
well as having lower energy consumption and reduced latency.

B. OneNAND Flash

Semiconductor vendors have recently announced fusion flash
memories such as OneNAND [2] and M-DOC [7], which have
an SRAM interface and randomly accessible buffers that allow
them to execute startup code directly, without using a NOR

flash or a mask ROM. Fig. 2 shows the internal structure of
Samsung’s OneNAND flash, which has three SRAM buffers
through which all read and write operations to the NAND flash
array must pass. One of these three buffers is dedicated to the
boot loader, and we will only be concerned with the other two
buffers which are used for normal data transfers.

This new architecture allows OneNAND flash to combine
high density of data and improved I/O performance with ran-
dom access to its page buffers. This random-access capability is
designed to eliminate the use of nonvolatile random accessible

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

JOO et al.: ENERGY AND PERFORMANCE OPTIMIZATION OF DEMAND PAGING WITH OneNAND FLASH 1973

Fig. 2. Internal structure of the OneNAND flash.

storage, such as a NOR flash, during a boot-up sequence. Power-
on reset automatically causes the initial boot code in the NAND

flash array to be loaded into the OneNAND buffer, and this
activates the uploading of the main boot loader to the on-chip
SRAM without the help of a NOR flash. Another design feature
of OneNAND is a buffer-level interleaving scheme, called dual
buffering, for successive page transfers: The transfer of a page
from the flash array to the OneNAND buffer can overlap with
the transfer of another page from the OneNAND buffer to the
on-chip SRAM. Dual buffering can significantly improve the
throughput during data transfer.

Our proposal is to use XIP from the OneNAND buffer not
only during the boot-up sequence but also during normal pro-
gram execution. In the following sections, we will show how
we exploit the random-access capability of the OneNAND page
buffers to optimize the energy consumption and performance of
demand paging.

IV. DEMAND PAGING WITH ONENAND FLASH

A. Conventional Demand Paging

Owing to its synchronous interface and support of dual
buffering, simply replacing a NAND flash with a OneNAND

flash can improve conventional demand paging. However, this
does not exploit the random-access capability of the OneNAND

buffer. As shown in Fig. 3(a), following a page fault, a new page
is first loaded from the OneNAND buffer to the on-chip SRAM
through sequential transfers, and then, it is always accessed
from the on-chip SRAM until it is replaced.

The energy consumption and performance of conventional
demand paging are solely determined by the page replacement
policy because that is the only decision that can be made when
a page fault occurs.

The number of page faults is a metric that is commonly used
to evaluate the energy consumption and performance of a page
replacement policy, rather than the total energy consumption or
the total execution time. This is because minimizing the number
of page faults always guarantees the best performance of con-
ventional demand paging in terms of both energy consumption
and execution time.

Fig. 3. Overall structure of demand paging with a NAND flash. (a) Conven-
tional demand paging with a OneNAND flash. (b) Proposed demand paging with
a OneNAND flash.

B. Proposed Demand Paging

The random-access feature of the OneNAND flash makes XIP
feasible, allowing a code page to be executed directly from the
OneNAND buffers. However, in most cases, a complete code
block cannot be stored in the OneNAND buffers since they are
quite small in the context of modern application programs.
Moreover, a new page is always loaded into the OneNAND

buffers, even if it will eventually be allocated to the on-chip
SRAM: This forces the existing page in the OneNAND buffers
to be evicted at every page fault. Thus, a page that is allocated to
the OneNAND buffers can be expected to have a short lifetime.
This limitation on the XIP feature of the OneNAND flash
suggests selective upload of pages to the on-chip SRAM, taking
account of their expected lifetime and utilization. Fig. 3(b)
shows the proposed demand paging with a OneNAND flash. An
infrequently used code page is executed from the OneNAND

buffer, without ever being loaded into the on-chip SRAM, and is
discarded after use [ci in Fig. 3(b)]. However, a frequently used
page is uploaded to the on-chip SRAM for current and future
use [cj in Fig. 3(b)]. We will call these XIP-preferred pages
and load-preferred pages. Our demand paging policy allows
the number of page faults to be significantly reduced without
increasing the size of the on-chip SRAM. Selective upload also
reduces the cost of loading a page from the OneNAND flash to
the on-chip SRAM.

When a page fault occurs, our demand paging scheme re-
quires page allocation and page replacement decisions to be
made. A page allocation policy determines whether to upload
the new page to the on-chip SRAM or to keep it in the
OneNAND buffer. After boot-up, the on-chip SRAM is soon
completely filled with load-preferred pages, at which point the
acceptance of a new page requires a page replacement policy,

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

1974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 4. Framework of the suggested solution methods.

which discards the least useful code page from the on-chip
SRAM. However, minimizing the number of page faults does
not guarantee optimal energy consumption and performance,
because allocating and accessing a load-preferred page and
an XIP-preferred page have different time and energy costs.
Consequently, the energy consumption and performance of our
demand paging policy is affected not only by the number of
page faults but also by the proportion of load-preferred pages
and of XIP-preferred pages.

C. Problem Statement

The problem of optimizing demand paging with a
OneNAND flash can be stated as follows.

1) Derive cost functions which express the energy consump-
tion and performance of demand paging: EPaging is its
energy consumption and TPaging is its execution time.

2) Suggest a page fault handler for OneNAND demand pag-
ing, consisting of a page allocation policy and a page
replacement policy, to minimize EPaging and TPaging for
a given sequence of page requests.

V. OPTIMIZATION OF PROPOSED DEMAND PAGING

In this section, we suggest a set of solution methods to
optimize the proposed OneNAND demand paging, as shown in
Fig. 4. First, we construct macromodels to derive the cost func-
tions EPaging and TPaging. Second, we develop a system-level
energy simulator and a paging system simulator to determine
the values of the derived macromodels. Third, we suggest a

new page fault handler, PM-XIP, which is composed of a page
history window as a page allocation policy and CLOCK as a
page replacement policy. Fourth, we suggest three threshold ad-
justing methods, namely, T-noncausal, T-single, and T-hopping,
to configure the page history window. The following four
sections describe the detail of each solution method.

A. Derivation of the Cost Functions

The cost functions EPaging and TPaging should be precise
enough to give a correct indication of the energy consumption
and performance of the proposed demand paging. At the same
time, they should be able to be evaluated quickly, because
repeated simulations are required to develop a new paging
policy.

Constructing the cost functions requires an analytical model
which can be evaluated rapidly. Simple analytical models of
memory devices can easily be constructed, because most mem-
ory device vendors provide a datasheet which gives the timing
specification and average energy consumption of each memory
operation. However, a precise analytical model of detailed
bus activities, including delays for arbitration and transaction
initialization, is hardly feasible.

A cycle-accurate system-level simulator would overcome
this difficulty, as it can precisely simulate the cycle-by-cycle
behavior of the memory system, including the bus arbiter and
the DMA controller. However, this approach is orders of magni-
tude slower than an analytical model, and thus, it is not suitable
for the development of a new paging policy. We compromise
by constructing macromodels of EPaging and TPaging using a
cycle-accurate system-level simulator and a trace-driven paging
system simulator.

To obtain simple formulations of EPaging and TPaging, we
will initially focus on portable embedded systems, assuming
the following conditions.

1) The target system is made up of a CPU core with a level-1
I-cache and a D-cache, an on-chip SRAM main memory,
and a OneNAND flash secondary memory [Fig. 3(b)].

2) Only the code pages are subject to demand paging, so
that flushing dirty data pages to the OneNAND flash is not
considered.

3) The logical page size is equal to the size of the OneNAND

buffer, so that an instruction code page will exactly fit into
the OneNAND buffer.

4) Migration of a page is performed only when a page fault
occurs.

Under the aforementioned assumptions, we define four types
of memory transfer, as shown in Table I. We will denote the
number of occurrences of each transfer during program exe-
cution as NTransfer. The energy consumption of each transfer
is ETransfer, and its execution time is TTransfer. Fig. 5 shows
the timing sequence for accessing an XIP-preferred page ci

and a load-preferred page cj : First, ci is requested and a page
fault occurs, so the page fault handler initiates Flash2Buf for
ci and allocates it to the OneNAND buffer. After Flash2Buf
has completed the execution, ci is available in the OneNAND

buffer, and the CPU accesses it directly through Buf_Read.
When another page fault is caused by cj , the page fault handler

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

JOO et al.: ENERGY AND PERFORMANCE OPTIMIZATION OF DEMAND PAGING WITH OneNAND FLASH 1975

TABLE I
NOTATION FOR DATA TRANSFERS IN OneNAND DEMAND PAGING

Fig. 5. Timing sequence for accessing an XIP-preferred page and a load-
preferred page.

initiates Flash2Buf for cj , but this time, it allocates cj to the on-
chip SRAM. When this run of Flash2Buf is complete, the page
fault handler calls Buf2SRAM to move cj to the on-chip SRAM.
When Buf2SRAM has run, cj is available in the on-chip SRAM,
and the CPU accesses it through SRAM_Read.

If we assume that only one task is running on the target SoC,
then the transfers listed in Table I do not occur simultaneously
(i.e., they do not overlap). Therefore, we can formulate EPaging

and TPaging as follows:

EPaging =NFlash2Buf · EFlash2Buf

+ NBuf2SRAM · EBuf2SRAM

+ NBuf_Read · EBuf_Read

+ NSRAM_Read · ESRAM_Read (1)

TPaging =NFlash2Buf · TFlash2Buf

+ NBuf2SRAM · TBuf2SRAM

+ NBuf_Read · TBuf_Read

+ NSRAM_Read · TSRAM_Read. (2)

Note that there are periods in the sequence shown in Fig. 5
during which no memory transfer is in progress, because of
successive cache hits or an idle state in the CPU. As these
idle periods are independent of the energy consumption and
performance of demand paging, we do not include their energy
consumption in EPaging or their execution time in TPaging.

In fact, most operating systems perform task switching at
the time of a page fault to avoid the CPU to wait for com-
pletion of page fault handling. Therefore, some transfers can
be overlapped, which will affect the formulation of EPaging

and TPaging. Suppose that Task A is waiting for a page to
be available, allowing Task B to become active. We see first
that Flash2Buf can be performed by Task A at the same time
as SRAM_Read or Buf_Read by Task B. Second, Buf2SRAM
can be initiated by Task A only after Flash2Buf has been
run by Task A, as shown in Fig. 5, and thus, they cannot be

overlapped. Third, the running of Buf2SRAM by Task A cannot
be overlapped with the running of SRAM_Read or Buf_Read by
Task B since Buf2SRAM involves both the on-chip SRAM and
the OneNAND buffer.

In this case, the formulation of (1) is not changed for the
following reasons.

1) It is obvious that EFlash2Buf is not affected by
ESRAM_Read (and vice versa).

2) We have observed from real measurements that the en-
ergy required to perform Flash2Buf and Buf_Read
simultaneously is almost the same as the sum of
EFlash2Buf and EBuf_Read.

Therefore, we can use (1) to evaluate EPaging.
On the other hand, TPaging may be reduced since the ex-

ecution times of some SRAM_Reads or Buf_Reads will be
masked by Flash2Buf. Although we can revise (2) by counting
only those reads that are not masked by Flash2Buf, it would
need a lot of time on a system-level simulator to find the
exact number of overlapped transfers. However, we discovered
experimentally that the sum of the execution times of all the
SRAM_Reads and Buf_Reads is typically less than 5% of the
total execution time. Therefore, the time taken by the overlap-
ping SRAM_Reads and Buf_Reads will be far less than 5%, and
(2) is still able to give us a tight upper bound on the actual value
of TPaging.

B. Simulation Tools for Evaluating the Cost Functions

1) System-Level Energy Simulator: To determine the value
of ETransfer and TTransfer in (1) and (2), we developed a system-
level energy simulator, the SNU Energy Explorer (SEE) 2.0,
which is a complete revision of the SEE Web [26]. SEE 2.0
was developed using the transaction-level modeling facilities
of SystemC [27]. The components of SEE 2.0 include an
instruction set simulator (ISS) module, a level-1 cache module,
and an advanced microcontroller bus architecture advanced
high-performance bus (AHB) module. All the modules of the
SEE 2.0 except the ISS are coded in the SystemC language.
SEE 2.0 employs a hardware ISS accelerator module that uses
a real ARM9TDMI processor core and is connected to the main
simulator kernel through the peripheral component interconnect
bus of the host computer. This ARM9TDMI core is fully
static, so that it can retain its state even if the clock frequency
is reduced, or the clock is actually stopped, which allows
cosimulation between the HW ISS module and the SystemC
simulator kernel. The detailed specifications of each module are
summarized in Table II.

We developed an on-chip SRAM module, a OneNAND flash
module, and a DMA module and integrated them into the AHB
module of the SEE 2.0 to construct the memory system of
the target SoC. The timing and energy models of the on-chip
SRAM module were obtained from the datasheet for Samsung
130-nm compiled memory [29]. The timing and energy models
of the OneNAND flash were constructed using the SNU energy
characterizer for memory devices (SECM) [31], which is an in-
house energy measurement tool for various off-chip memory
devices. Table III shows the values of ETransfer and TTransfer

that are used in this paper. EFlash2Buf and TFlash2Buf are

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

1976 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

TABLE II
SPECIFICATION OF THE SYSTEM-LEVEL ENERGY SIMULATOR

TABLE III
EXPERIMENTAL VALUES OF ETransfer AND TTransfer

TABLE IV
BENCHMARK APPLICATIONS

solely determined by the characteristic of the OneNAND flash
and are directly measured by the SECM. The other values were
obtained from the simulation results from the SEE 2.0.

2) Paging System Simulator: The term NTransfer in (1) and
(2) is determined by the page allocation policy, the page
replacement policy, the size of the on-chip SRAM, and the
sequence in which the application program requests pages. We
implemented a simulator to model the behavior of the paging
system with the policies under development. It runs fast (e.g.,
simulation of 500 000 page accesses can be done in 0.54 s)
because it is trace driven, which allows repeated simulations to
be performed in a reasonable length of time. We used Valgrind
[32] to obtain the page request sequences of various application
programs; we modified Cachegrind, which is the cache simu-
lation module of Valgrind, to capture the trace of level-1 cache
misses. Table IV shows the benchmark applications used for
the simulation. Note that the third column in Table IV includes
only the read-only pages, because all the read and write pages
are pinned to the on-chip SRAM.

Fig. 6. Page request sequence of gqview, which is nonstationary.

Fig. 7. Page history window.

C. PM-XIP: Proposed Page Fault Handler for OneNAND

Demand Paging

PM-XIP is a new page fault handler for OneNAND demand
paging. It consists of a page allocation policy and a page
replacement policy, as outlined in Section IV-B.

A page replacement policy is a necessary part of conventional
demand paging, and many sophisticated algorithms have been
developed over several decades. However, the relationship be-
tween the performance of the page replacement policy and the
page allocation policy has not been analyzed in previous work.
We have observed experimentally that a page replacement pol-
icy, which has proved effective in conventional demand paging,
also performs well for OneNAND demand paging. We therefore
use CLOCK as the page replacement policy for PM-XIP, as it
performs well and has a low computational overhead.

A different situation exists with page allocation: No existing
policy meets the demands of paging with OneNAND flash. We
have therefore developed a new page allocation policy which
aims to fulfill the following requirements.

1) Predicts whether a page will be frequently used in the
future. This requirement is shared with the page re-
placement policy. However, the page allocation policy
has to estimate how frequently a page will be used in
comparison to all the pages that are referenced, whereas
the page replacement policy only needs to select the LFU
page from all those in the on-chip SRAM.

2) Considers not only the frequency of page requests but
also their recency. This is because page access patterns
are not usually stationary, and thus, the access frequency
of a page will change over time, as shown in Fig. 6.

3) Has a low storage and computation overhead, because we
are aiming at lightweight portable embedded systems.

We use a page history window to satisfy these requirements.
It is similar to the sliding window method that was introduced
for receding-horizon control [33] and which has also been
recently used to predict the future behavior of service requests
in the dynamic power management of hard disk drives [34].
Fig. 7 shows the structure of the page history window. When a

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

JOO et al.: ENERGY AND PERFORMANCE OPTIMIZATION OF DEMAND PAGING WITH OneNAND FLASH 1977

Fig. 8. Psuedocode of PM-XIP.

new page is accessed, it is pushed into the top of the window,
and the oldest page in the page history window is discarded
from the bottom of the window. A page allocation decision is
made at every page fault by counting the number of occurrences
of the missed page in the page history window and comparing
the result with a predefined threshold. If the threshold has
been reached, we assume that the page will continue to be
frequently used in the near future, and allocate it to the on-
chip SRAM (i.e., it is load preferred). Otherwise, we allocate
it to the OneNAND buffer (i.e., it is XIP preferred). Due to its
finite FIFO structure, the page history window can track both
the frequency and recency of the page request sequence, at the
cost of a reasonable computation and storage overhead.

The window size and the threshold are the primary control
variables that determine the quality of the prediction made
by the page history window. If the window is too large, the
prediction is contaminated by old access patterns, which may
be quite different from recent patterns. However, if the window
is too small, there will be insufficient information for a good
prediction. If the threshold is too high, frequently used pages
can be misallocated to the OneNAND buffers, which may in-
crease the number of page faults. However, if the threshold is
too low, only a few pages can be allocated to the OneNAND

buffer, and its XIP capability will not be fully exploited.
Fig. 8 shows the pseudocode of PM-XIP. If the required page

is neither in the on-chip SRAM nor in the OneNAND buffers, a
page fault occurs (line 7). The missed page is loaded into one
of the OneNAND buffers (line 11), and the pages in both the
OneNAND buffers are evaluated by the page history window

Fig. 9. Threshold values determined by T-noncausal (application: gqview;
page cache size: 24 kB; w = 32).

Fig. 10. Mechanism of T-hopping. (a) State transition diagram. (b) Timing
diagram.

(lines 12 and 13). If there is no more free space in the OneNAND

buffers or the on-chip SRAM, CLOCK selects a victim page
and replaces it with the required page (lines 9 and 16).

Note that a frequently used page can be allocated to the
OneNAND buffer if there are not enough access records for that
page in the page history window (e.g., when it is accessed for
the first time). However, the page history window quickly learns
its access pattern, and the hot page has a chance to be loaded to
the on-chip SRAM at every page fault since PM-XIP evaluates
all the pages in the OneNAND buffers (line 12). Therefore, the
hot page will soon move from the OneNAND buffer to the on-
chip SRAM.

D. Determining the Size of the Page History Window
and Its Threshold

We sized the page history window experimentally, while
considering the tradeoff between prediction quality and storage
overhead, and the size is not changed at runtime. To determine
the threshold value, we considered using an offline method,
T-noncausal, and two online methods, T-single and T-hopping.

1) T-Noncausal: T-noncausal periodically readjusts the
threshold by looking ahead. The simulation begins with a
zero threshold for the current period of time. This has length
pnon and is determined before the simulation. After the sim-
ulation is finished, T-noncausal records the resulting values
of EPaging and TPaging and rolls back to the beginning of
the current period while incrementing the threshold by one.
T-noncausal repeats the simulation until the threshold becomes
equal to the size of the page history window, and then selects

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

1978 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 11. Values of EPaging and TPaging for PM-XIP, normalized to conventional demand paging, for various window sizes and threshold values (application:
gqview; page cache size: 24 kB).

the threshold value for that period which minimizes EPaging

or TPaging. T-noncausal repeats this procedure for the next
period and so on, until it reaches the end of the page request
sequence.

T-noncausal cannot be implemented in practice unless the
page request sequence is known in advance, but it can serve
as a reference to compare T-single and T-hopping. We claim
that T-noncausal is not an optimal offline solution but a near-
ideal method of periodical threshold adjustment. To the best of
our knowledge, no optimal offline algorithm for page allocation
is yet known unlike Belady’s MIN for page replacement. A
decision of page allocation may affect the optimal decision
of page replacement; Belady’s MIN is not optimal any more
for the demand paging with OneNAND flash. In other words,
just combining Belady’s MIN and the optimal page allocation
algorithm, if any, does not guarantee the true optimal solution
for demand paging with OneNAND flash.

2) T-Single: We can expect to know the specifications of an
embedded system, including the on-chip SRAM size and the
target applications. We can therefore select a good threshold
value tsin by offline analysis of a sample trace (i.e., part of the
whole page request sequence) with the given size of the on-chip
SRAM. The chosen value of tsin is not changed at runtime.
The analysis of the sample trace is similar to that performed
by T-noncausal. The simulation is repeated while changing the
threshold from zero to the size of the page history window,
and then, the best threshold value is selected. Consequently,
the efficiency of this method, which we call T-single, is totally
dependent on how well the sample trace represents the whole
page request sequence.

3) T-Hopping: In practice, the page request pattern of an
application often changes abruptly, for example, when a pro-
gram enters a new execution phase. Consequently, the optimal
threshold value may vary significantly as time elapses, as shown
in Fig. 9. Therefore, a single threshold is usually inadequate,
and we need to develop a threshold adaptation algorithm that
can track the change of the page request pattern.

The mechanism of T-hopping, as shown in Fig. 10, involves a
normal period and a promotion period, which are, respectively,
associated with the two threshold values tnor and tpro (tnor >
tpro). The parameters phop and rhop (0 < rhop < 1) control the

length of both the periods. In the normal period, T-hopping
uses the threshold value tnor to classify the most frequently
accessed pages as load preferred. However, some pages may not
be classified as a load-preferred page, even though they deserve
to be loaded into the on-chip SRAM, which may result in a
significant number of page faults. In order to compensate for
these incorrect page allocations, T-hopping periodically enters
a promotion period and lowers the threshold to tpro for a short
time. This allows some additional pages to be allocated to the
on-chip SRAM. Of course, some undeserving pages may be
loaded into the on-chip SRAM during the promotion period,
but they will be used less frequently than the other pages in the
on-chip SRAM, and will therefore soon be evicted, avoiding
serious memory pollution.

The parameter values of T-hopping should be carefully se-
lected in order to achieve substantial energy saving and per-
formance improvement. Otherwise, its promotion periods may
rather increase the number of page faults so that T-hopping
performs worse than conventional demand paging. At the same
time, the configuration process of T-hopping should be sim-
ple enough so that it can be easily implemented in practice.
Considering these concerns, we suggest an offline analysis
using a small-size sample trace, like T-single. We will show
in the following section that T-hopping generally outperforms
T-single and is less sensitive to the sample trace in spite of its
complicated structure, compared with T-single.

VI. PERFORMANCE EVALUATION

A. Effect of Configuring the Page History Window
on EPaging and TPaging

We started by investigating the energy consumption and
performance of PM-XIP by changing the window size from
2 to 1024 and its threshold from 0% to 50% of that size.
These parameters are then fixed during runtime. The simulation
results are shown in Fig. 11, where the y-axes are normalized
to the results from conventional demand paging, which we call
ConvPaging.

The simulation results show that the efficiency of PM-XIP
strongly depends on the window size and the threshold value.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

JOO et al.: ENERGY AND PERFORMANCE OPTIMIZATION OF DEMAND PAGING WITH OneNAND FLASH 1979

TABLE V
ENERGY CONSUMPTION AND EXECUTION TIME OF PM-XIP FOR

THREE THRESHOLD VALUES (APPLICATION: gqview;
PAGE CACHE SIZE: 24 kB; w = 32)

When we set (w, t) to (32, 5), EPaging and TPaging were
reduced by 33.2% and 24.2%, respectively. However, when we
set (w, t) to (128, 52), they increased by 33.3% and 58.9%. We
also observe that the shapes of two graphs in Fig. 11 closely
resemble each other, which suggests that a page history window
which is optimized to reduce EPaging may also be nearly
optimal for TPaging. We confirmed by experiments that this ob-
servation is valid not only for gqview but also for the other ap-
plications. We will therefore use EPaging as our primary metric.

Table V provides further information about the simulations
shown in Fig. 11. The results in the second column are
equivalent to those we would expect for ConvPaging, because
the threshold is set to zero so that all the missed pages are
allocated to the on-chip SRAM (i.e., the number of page
faults NFlash2Buf equals the number of pages loaded from the
OneNAND flash to the on-chip SRAM, NBuf2SRAM). The third
column contains results for a threshold of 2, when 65.5% of
the missed pages were allocated to the on-chip SRAM and the
remainder to the OneNAND buffer. This allocation reduces both
NFlash2Buf and NBuf2SRAM . There is, of course, an overhead
in accessing the code pages in the OneNAND buffer, which is
slower and more energy-consuming than the on-chip SRAM,
but this is outweighed by the saving in energy and improved
performance. EPaging and TPaging are reduced by 19.0% and
16.3%, respectively, compared with ConvPaging. The fourth
column contains the results for a threshold value of 20, which
only allows a few of the most frequently accessed pages to
be allocated to the on-chip SRAM. Despite the significant
reduction in NBuf2SRAM , EPaging and TPaging are not reduced
because of the growth of NFlash2Buf . Table V suggests that
the energy consumption and performance of PM-XIP are more
sensitive to the threshold value than to the size of the page
history window.

B. Determination of Window Size

We investigated how the size of the page history window
affects the efficiency of PM-XIP. In these experiments, we

Fig. 12. Energy consumption of PM-XIP, normalized to conventional demand
paging, for various window sizes (page cache size: 32 kB).

Fig. 13. Effect of the threshold adjustment period on the energy consumption
of T-noncausal (page cache size: 24 kB; w = 32).

used T-single to determine the threshold value and varied
the window size as shown in Fig. 12. The results show that
PM-XIP generally uses less energy with a larger window size,
but above 16, there is little further benefit (note that the x-axis
of Fig. 12 has a logarithmic scale). Moreover, Fig. 11 shows
that, as the window size becomes larger, the range of the thresh-
old values for which PM-XIP is superior to ConvPaging is
reduced, increasing the risk that decisions based on a threshold
will not reduce EPaging and TPaging. In addition, the size of
the page history window largely determines the overhead of
PM-XIP. If we have a small page history window (e.g., fewer
than 32 entries), a range of efficient implementations become
available such as a dedicated hardware FIFO module or a
cache locking scheme (i.e., a dedicated area of the on-chip
SRAM). However, if the page history window has, for example,
1024 entries, it needs 4 kB of memory space, and these fast
hardware methods become too expensive. We therefore set the
window size to 32 for the remaining experiments. We think that
this value represents a good compromise between theoretical
and practical efficiencies.

C. Determination of Threshold Value

We investigated the energy variations of T-noncausal,
T-single, and T-hopping with different configurations. Intu-
itively, we would expect that smaller values of pnon allow
T-noncausal to follow changes to the page access pattern more
accurately. Fig. 13 shows the efficiency of T-noncausal for
various threshold adjustment periods. In most cases, shorten-
ing pnon reduces EPaging as expected, but too short a period
actually increases EPaging, and the optimal period ranges from
100 to 10k depending on the page request sequence.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

1980 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 14. How the energy consumptions of T-single and T-hopping depend on
the position of the sample trace (page cache size: 24 kB; w = 32).

We observed the energy variation of T-single and T-hopping
by changing the starting point for acquisition of the sample
trace, which has a length of 2% of the page request sequence.
Fig. 14 shows the simulation results for xpdf and gimp.
For xpdf, T-single fails to reduce EPaging for many sample
traces, suggesting that these samples do not represent the
access pattern of xpdf very well. The energy consumptions of
T-hopping and T-single dip for the same traces, but T-hopping
saves more energy than T-single. The results for gimp were
rather different. The amount of energy saved by T-single is not
much affected by the location of the sample trace. This indicates
that the page access pattern of gimp changes relatively little
over time, which is advantageous for T-single. In this situation,
the promotion period of T-hopping might be expected to be
an unnecessary overhead; however, T-hopping actually shows
comparable energy consumption to T-single, which means that
its overhead is not so significant. To summarize, T-hopping is
less sensitive to the position of the sample trace and generally
superior to T-single.

D. Effect of Changing Working Set Size

In Section III-A, we said that an increase in code size, due
to software upgrade after an SoC has been fabricated, can
significantly make worse the performance of demand paging.
We investigated experimentally whether PM-XIP can alleviate
this problem. Starting with a situation in which LiVES is exe-
cuted on a 48-kB page cache, we added the other applications
one by one. We emulated a multiprogramming environment
by modifying the paging system simulator to support periodic
switching between different page request sequences. Table VI
shows that PM-XIP can reduce both EPaging and TPaging when
many applications are being executed simultaneously in an on-
chip SRAM of fixed size.

E. Effect of Changing Page Replacement Policy

To observe the effect of the page replacement policy on
the energy consumption of PM-XIP, we implemented MIN,

TABLE VI
EFFECT OF INCREASING CODE SIZE ON THE ENERGY CONSUMPTION

OF PM-XIP (PAGE CACHE SIZE: 48 kB; w = 32)

Fig. 15. Effect of the page replacement policy on the energy consumption of
PM-XIP (application: gqview; page cache size: 24 kB; w = 32).

LRU, and FIFO as alternatives to CLOCK. Fig. 15 shows the
energy consumptions of ConvPaging and PM-XIP with the
three threshold decision methods. In ConvPaging, the energy
consumptions of CLOCK and LRU are comparable, but FIFO
does worse. This ordering does not change very much under
PM-XIP, suggesting that a page replacement policy which
is effective for conventional demand paging also works well
for demand paging with OneNAND flash. If a better page
replacement policy were to become available, we could easily
substitute it for CLOCK to improve the energy consumption
and performance of PM-XIP.

F. Overall Energy Consumption and Performance of PM-XIP

We compared the overall energy consumption and perfor-
mance of PM-XIP for various applications and on-chip SRAM
sizes, and the results are shown in Table VII. We used the
best value of pnon for each page request sequence to configure
T-noncausal, and we extracted a 10K sample trace from the
center of the page request sequence of each application for
T-single and T-hopping. Table VII shows that T-single achieves
an average 19% reduction of EPaging and a 14% reduction
of TPaging. T-hopping outperforms T-single for various appli-
cations and on-chip SRAM sizes, achieving an average 26%
reduction of EPaging and a 19% reduction of TPaging. We see
that T-hopping did better than ConvPaging for LiVES with 32
and 48 kB of page caches, whereas T-single did worse with
these configurations, which is in keeping with the results shown
in Fig. 14. We performed the same simulations for 8- and 16-kB
level-1 cache sizes and confirmed similar performance for all
these cache sizes. However, those results are omitted because
of the limited space.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

JOO et al.: ENERGY AND PERFORMANCE OPTIMIZATION OF DEMAND PAGING WITH OneNAND FLASH 1981

TABLE VII
OVERALL ENERGY CONSUMPTION AND PERFORMANCE OF PM-XIP (w = 32, EPaging, AND TPaging ARE NORMALIZED TO THOSE OF ConvPaging)

It is possible that T-hopping performs worse than conven-
tional demand paging, for example, in the case of gimp with
64-kB page cache. This is because we tuned the parameters of
T-hopping with the sample trace obtained from a part of the
page request sequence, rather than with the whole sequence,
which is not feasible in practice. Note that, even in such a case,
the absolute amount of the performance overhead caused by
T-hopping is not so significant.

VII. CONCLUSION

Current state-of-the-art fusion memory devices integrate
multiple heterogeneous memory components to reduce the
complexity of embedded systems. However, fusion memory
can also affect the energy consumption and performance of a
system, and this is an aspect that has not yet been fully in-
vestigated. Furthermore, existing paging schemes, which were
designed for legacy memory devices, may not give the best
results with fusion memory devices.

We have presented a new demand paging scheme that is
designed for Samsung’s recent OneNAND fusion flash memory,
which integrates a NAND flash and dual SRAM buffers, within
the context of an embedded system. We have also introduced
a new page fault handler for demand paging, PM-XIP, which
fully exploits the advanced features of OneNAND flash. Our
simulation results show that PM-XIP outperforms conventional
demand paging, on average, by 26% in terms of energy con-
sumption and by 19% in terms of execution time. We expect
that the combination of the OneNAND demand paging system
with a novel page fault handler such as PM-XIP will also allow
significant reduction in the size of the on-chip SRAM in low-
to mid-end embedded systems, in which cost effectiveness is
critical.

ACKNOWLEDGMENT

The authors would like to thank the ICT at Seoul National
University for providing research facilities for this study.

REFERENCES

[1] Y. Joo, Y. Choi, C. Park, S. W. Chung, E. Chung, and N. Chang, “De-
mand paging for OneNAND flash execute-in-place,” in Proc. Int. Conf.
Hardware/Software Codes. Syst. Synthesis, 2006, pp. 229–234.

[2] OneNAND Features & Performance, Dec. 2005, Samsung Electronics Co.
Ltd. [Online]. Available: http://www.samsungelectronics.com

[3] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min, “Compiler-assisted
demand paging for embedded systems with flash memory,” in Proc. ACM
Int. Conf. Embedded Softw., Sep. 2004, pp. 114–124.

[4] H.-W. Park, K. Oh, S. Park, M.-M. Sim, and S. Ha, “Dynamic code
overlay of SDF-modeled programs on low-end embedded systems,” in
Proc. Conf. Des. Autom. Test Eur., 2006, pp. 945–946.

[5] H.-W. Tseng, H.-L. Li, and C.-L. Yang, “An energy-efficient virtual mem-
ory system with flash memory as the secondary storage,” in Proc. Int.
Symp. Low Power Electron. Des., 2006, pp. 418–423.

[6] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, and J. Lee, “CFLRU: A
replacement algorithm for flash memory,” in Proc. Int. Conf. Compilers,
Arch. Synthesis Embedded Syst., 2006, pp. 234–241.

[7] “M-Systems DOC H3,” M-Systems, 2006. [Online]. Available: http://
www.m-systems.com

[8] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of scratch-
pad memory in embedded processor applications,” in Proc. Eur. Des. Test
Conf., Mar. 1997, pp. 7–11.

[9] J. P. Diguet, S. Wuytack, F. Catthoor, and H. D. Man, “Formal-
ized methodology for data reuse exploration in hierarchical memory
mappings,” in Proc. Int. Symp. Low Power Electron. Des., Aug. 1997,
pp. 30–35.

[10] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad mem-
ory hierarchy design and management,” in Proc. Des. Autom. Conf.,
Jun. 2002, pp. 690–695.

[11] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, “Data reuse analysis
technique for software-controlled memory hierarchies,” in Proc. Des.
Autom. Test Eur. Conf., Feb. 2004, pp. 202–207.

[12] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S. L. Min, “A dynamic
code placement technique for scratchpad memory using postpass opti-
mization,” in Proc. Int. Conf. Compilers, Arch. Synthesis Embedded Syst.,
2006, pp. 223–233.

[13] L. A. Belady, “A study of replacement algorithms for virtual storage
computers,” IBM Syst. J., vol. 5, no. 2, pp. 78–101, 1966.

[14] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update rules,”
in Proc. Annu. ACM Symp. Theory Comput., 1984, pp. 488–492.

[15] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page replacement
algorithm for database disk buffering,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 1993, pp. 297–306.

[16] D. Lee, J. Choi, H. Choe, S. Noh, S. Min, and Y. Cho, “Implementation
and performance evaluation of the LRFU replacement policy,” in Proc.
Euromicro Conf., 1997, pp. 106–111.

[17] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency set
replacement policy to improve buffer cache performance,” in Proc. ACM
SIGMETRICS Int. Conf. Meas. Model. Comput. Syst., 2002, pp. 31–42.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

1982 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

[18] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead re-
placement cache,” in Proc. USENIX Conf. File Storage Technol., 2003,
pp. 115–130.

[19] F. J. Corbato, A Paging Experiment With the Multics System. Cambridge,
MA: MIT Press, 1969, pp. 217–228. In Honor of Philip M. Morse.

[20] I. Ari, M. Gottwals, and D. Henze, “Performance boosting and workload
isolation in storage area networks with SANCache,” in Proc. NASA Conf.
Mass Storage Syst. Technol., May 2006, pp. 263–273.

[21] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Eval-
uating content management techniques for web proxy caches,” ACM
SIGMETRICS Perf. Eval. Rev., vol. 27, no. 4, pp. 3–11, Mar. 2000.

[22] Two Technologies Compared: NOR vs. NAND, 2003. White Paper,
91-SR-012-04-8L, Rev 1.1: M-Systems.

[23] H. Kim, J. In, D. Ham, S. Yoon, and D. Shin, “Virtual-ROM: A new
demand paging component for RTOS and NAND flash memory based
mobile devices,” in ISCIS, vol. 4263. Berlin, Germany: Springer-Verlag,
2006, pp. 677–686.

[24] Demand Paging on Symbian OS, Symbian Ltd. [Online]. Available:
http://www.symbian.com/symbianos/demandpaging/index.html

[25] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for CompactFlash systems,” IEEE Trans. Consum.
Electron., vol. 48, no. 2, pp. 366–375, May 2002.

[26] I. Lee, Y. Choi, Y. Cho, Y. Joo, H. Lim, H. G. Lee, H. Shim, and N. Chang,
“Web-based energy exploration tool for embedded systems,” IEEE Des.
Test Comput., vol. 21, no. 6, pp. 572–586, Nov./Dec. 2004.

[27] SystemC 2.0.1 Language Reference Manual, 2002. [Online]. Available:
http://www.systemc.org

[28] AMBA AHB Cycle Level Interface (AHB CLI) Specification, 2003.
[Online]. Available: http://www.arm.com/products/solutions/ahbcli.html

[29] STD150 0.13 µm 1.2V CMOS Standard Cell Library for Pure Logic
Products, Feb. 2004, Samsung Electronics, Co. Ltd. [Online]. Available:
http://www.samsungelectronics.com

[30] KFG5616x1A x16 OneNAND Specification, Dec. 2005, Samsung Electron-
ics, Co. Ltd. [Online]. Available: http://www.samsungelectronics.com

[31] Y. Joo, Y. Cho, D. Shin, J. Park, and N. Chang, “An energy characteriza-
tion platform for memory devices and energy-aware data compression for
multilevel-cell flash memory,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 13, no. 3, pp. 1–29, Jul. 2008.

[32] N. Nethercote and J. Seward, “Valgrind: A program supervision frame-
work,” Electron. Notes Theor. Comput. Sci., vol. 89, no. 2, pp. 1–23, 2003.

[33] W. Kwon, D. Byun, and O. Kwon, “Receding horizon tracking control as
a predictive control and its stability properties,” in Proc. Amer. Control
Conf., 1988, pp. 2070–2075.

[34] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. D. Micheli,
“Dynamic power management for nonstationary service requests,” IEEE
Trans. Comput., vol. 51, no. 11, pp. 1345–1361, Nov. 2002.

Yongsoo Joo (S’01–M’08) received the B.S. and
M.S. degrees in computer engineering and the Ph.D.
degree in electrical and computer engineering from
Seoul National University, Seoul, Korea, in 2000,
2002, and 2007, respectively.

He is currently a Postdoctoral Researcher with
the Department of Electrical Engineering and
Computer Science, Seoul National University. His
research interests include energy-aware memory sys-
tem design and system-level energy and performance
estimation.

Yongseok Choi (S’01–M’08) received the B.S. and
M.S. degrees in computer engineering and the Ph.D.
degree in electrical and computer engineering from
Seoul National University, Seoul, Korea, in 2000,
2002, and 2007, respectively.

Since November 2007, he has been with the
Digital Media R&D Center, Samsung Electronics,
Suwon, Korea. His research interests include em-
bedded systems design and system-level low-power
design.

Jaehyun Park (S’08) received the B.S. degree in
electrical engineering from Seoul National Univer-
sity, Seoul, Korea, in 2006, where he is currently
working toward the Ph.D. degree in electrical engi-
neering and computer science.

His research interests include low-power embed-
ded system design and system-on-chip design.

Chanik Park received the B.S. and M.S. degrees in
computer engineering and the Ph.D. degree in elec-
trical and computer engineering from Seoul National
University, Seoul, Korea, in 1995, 1997, and 2002,
respectively.

Since 2004, he has been a Senior Engineer
with the Memory Division, Samsung Electronics,
Hwaseong, Korea. His research interests include em-
bedded storage architecture and high-performance
and reliable solid-state drive-based NAND flash
memories with the assistance of hardware/software
codesign.

Sung Woo Chung (M’06) received the B.S. de-
gree in computer engineering and the Ph.D. degree
in electrical and computer engineering from Seoul
National University, Seoul, Korea, in 1996 and 2003,
respectively.

Since 2006, he has been an Assistant Professor
with the Division of Computer and Communication
Engineering, Korea University, Seoul. His research
interests include technology-aware design and archi-
tectural supports for flash memories.

Eui-Young Chung (M’06) received the B.S. and
M.S. degrees in electronics and computer engineer-
ing from Korea University, Seoul, Korea, in 1988 and
1990, respectively, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 2002.

From 1990 to 2005, he was a Principal Engi-
neer with SoC R&D Center, Samsung Electronics,
Yongin, Korea. He is currently an Associate Pro-
fessor with the School of Electrical and Electronic
Engineering, Yonsei University, Seoul. His research

interests include system architecture and VLSI design, including all aspects of
computer-aided design with the special emphasis on low-power applications
and flash memory applications.

Naehyuck Chang (M’97–SM’05) received the B.S.,
M.S., and Ph.D. degrees from the Department of
Control and Instrumentation, Seoul National Uni-
versity, Seoul, Korea, in 1989, 1992, and 1996,
respectively.

He is currently an Associate Professor with the
Department Electrical Engineering and Computer
Science, Seoul National University.

Dr. Chang is a Senior Member of the Association
for Computing Machinery. He serves or served as
a member of the technical program committee of

ACM SIGDA and IEEE Circuits and Systems Society conferences and sympo-
siums such as DAC, ICCAD, ISLPED, DATE, CODES+ISSS, ISQED, GLS-
VLSI, ASP-DAC, and so on. He is currently an Associate Editor of IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS, Journal of Low-Power Electronics, and Journal of Embedded
Computing.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 3, 2008 at 22:55 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

