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Adopting the Drowsy Technique for Instruction Caches: A Soft

Error Perspective*
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SUMMARY  As technology scales down, leakage energy accounts for
a greater proportion of total energy. Applying the drowsy technique to a
cache, is regarded as one of the most efficient techniques for reducing leak-
age energy. However, it increases the Soft Error Rate (SER), thus, many
researchers doubt the reliability of the drowsy technique. In this paper, we
show several reasons why the instruction cache can adopt the drowsy tech-
nique without reliability problems. First, an instruction cache always stores
read-only data, leading to soft error recovery by re-fetching the instructions
from lower level memory. Second, the effect of the re-fetching caused by
soft errors on performance is negligible. Additionally, a considerable per-
centage of soft errors can occur without harming the performance. Lastly,
unrecoverable soft errors can be controlled by the scrubbing method. The
simulation results show that the drowsy instruction cache rarely increases
the rate of unrecoverable errors and negligibly degrades the performance.
key words: instruction cache, soft error, drowsy technique, low-power

1. Introduction

A soft error is a temporal malfunction caused by alpha par-
ticles and neutrons from cosmic radiation. It has become a
crucial factor threatening the correctness of a system as pro-
cess technology is scaled down. It makes memory cells up-
set or combinational logics perform inaccurate operations,
which does not cause any permanent damage to the circuit
[2]. Due to its severity, the soft error has been researched
from different perspectives; physical phenomena of soft er-
rors, protection schemes against soft errors, etc. Soft er-
rors may result in serious problems in all parts of a system
including combinational logics and sequential logics. As
today’s system-on-chips are evolving from logic-dominant
to memory-dominant chips, the proportion of memories in
a chip is rapidly increasing. Embedded memories are ex-
pected to occupy 94% of an SoC (System on Chip) by 2014
and the soft error hazard to sequential logics will increase as
this proportion grows [3].

Among many sequential logics, a cache is an indis-
pensable factor for system performance and its integrity is
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an essential requisite for system reliability. On the other
hand, it consumes substantial leakage power. In addition,
as the size of transistors becomes smaller, leakage accounts
for higher proportion of power consumption. To reduce the
increased leakage power, the drowsy cache (changing the
supply voltage) was proposed [4]. In this technique, the sup-
ply voltage is lowered when the cache line is not expected
to be accessed soon. Data is not lost when the cache line
is in the leakage saving (low-voltage) mode, called ‘drowsy
mode.” In the drowsy mode, data is retained, although it can-
not be accessed for read or write operations. Normal oper-
ations are performed after a wake-up, which is an operation
to lift up the supply voltage to the normal voltage level. The
drowsy technique indispensably reduces the reliability of a
data cache due to soft errors [5], whereas it may not reduce
the reliability of an instruction cache that stores read-only
data by re-fetching instructions from lower-level memories
(caches).

In this paper, we evaluate the reliability of an instruc-
tion cache and the performance overhead caused by soft er-
ror recovery (re-fetching the instructions from lower-level
memories [1]). The instruction cache has been designed
without any error correction technique, though it has par-
ity bits that are for error detection. To the best of our knowl-
edge, there has not been any quantitative study of the impact
of soft errors on an instruction cache with the drowsy tech-
nique.

The remainder of this paper is organized as follows;
Sect.2 provides related works on soft errors. Section 3
describes a soft error model which is used for this study.
Section 4 provides solutions to protect an instruction cache
against soft errors. Section 5 classifies soft errors, depend-
ing on harmfulness and cache mode (normal/drowsy). Sec-
tion 6 analyzes simulation results. Finally, Sect. 7 concludes
this paper.

2. Related Works
2.1 Physical Perspective

The soft error is different from the hard error which is due
to a permanent physical defect during fabrication [6]. The
hard error is closely related to the process yield, which de-
termines the chip cost [7]. Since today’s chips are memory-
dominant and embedded memories have aggressive design
rules, semiconductor industries adopt yield optimization so-
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lutions [3]. The yield can be improved by redundancy struc-
tures, which replace faulty cells. Redundancy policies are
divided into a word redundancy, a word-line redundancy,
a bit-line redundancy, and an IO redundancy [6],[8], [9].
Lastly, triple-modular redundancy (TMR), which is based
on the two-out-of-three voting concept, has been suggested
[10]-[12].

On the other hand, the soft error is a temporal upset
caused by alpha particles and neutrons from cosmic radia-
tion which cause memory cell upsets or induce inaccurate
combinational operations [13]. Since the soft error was in-
troduced [6], [14], the soft error has been studied from dif-
ferent perspectives: physical explanation of outbreak [15]-
[17], modeling of the soft error rate [10], [13], [18]-[21],
and detecting/correcting soft errors [22]-[28].

2.2 Architectural Perspective

As the supply voltage is decreased with respect to technol-
ogy scaling, a system cannot be protected against the soft
error with only circuit-/process-level supports. Thus, ar-
chitectural approaches have been proposed [5],[29]-[32].
Memory designers initially concentrated on soft errors in
a DRAM chip, rather than an SRAM chip. An error-
correcting code, which can correct up to two soft errors on
each word line within a DRAM chip was proposed [22].
This was an early attempt to obtain reliability of a DRAM
by using systematic analysis. Software redundancies were
also introduced [26], [27]. Software redundancy refers to
the fact that redundant instructions are executed to guaran-
tee satisfactory reliability; for example, instruction binaries
are modified prior to execution [27], or some instructions
are duplicated to detect errors in the system during run-time
[26]. Data cells were proposed for use as redundant cells
[28]. The data cache cell, which is not expected to be used
in the near future, is evicted, and the unoccupied cell is used
as a redundant cell.

An unrecoverable error is an error which cannot be re-
covered from by an error correction scheme. As the usage of
a memory cell increases, the SER in a system increases, re-
sulting in an increase in unrecoverable errors. While scrub-
bing (periodically detecting and correcting soft errors in all
cache lines™) effectively reduces unrecoverable errors [24],
[33], performance is degraded by scrubbing. Thus, the
scrubbing period should be carefully selected, especially
considering unrecoverable error rates.

Several architectural approaches to the soft error prob-
lem were proposed recently. In [30], architectural simula-
tion was done on a cache; soft errors in cache lines are par-
ticularly critical. On the other hand, tags of an instruction
cache have greatest robustness against soft errors. Soft er-
rors are classified according to whether the error affects pro-
gram outcome or not [29], [32]. Some researches deal with
the soft error problem in a low power cache; the soft error
susceptibility of a low power data cache was analyzed [5].

Additionally, since the drowsy primitive [4] weakens
system reliability [34], the influence of the drowsy tech-
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nique should be analyzed from an architectural perspective.
Though there have been many studies about soft errors and
low-power caches, to the best of our knowledge, the reli-
ability of a drowsy instruction cache has not been studied.
Without evaluating the dependability of a drowsy instruc-
tion cache, the drowsy technique cannot be adopted for an
instruction cache in future technology.

3. Soft Error Model

There are several factors which influence the probability of
soft errors: technologies, doping and packaging materials,
altitude, etc. All the parameters, except supply voltage, are
assumed to be constant, in order to investigate the relation
between the supply voltage and the soft error rate. Based on
[13], we calculate the soft error rate at sea level to be:

SERochexp(—@) (1)
Os
where,

A : the drain area,

QOcrir : the critical charge,

O : the collection slope.

A soft error occurs if collected charges of a cell ex-
ceed the critical charge Q. of the cell. The collection slope
O, means the speed at which charges of cells are collected,
which strongly depends on the doping density and the sup-
ply voltage Vcc. Because the critical charge Q. is pro-
portional to the supply voltage, the SER increases exponen-
tially, as the supply voltage decreases. In 70 nm technology,
an SRAM cell operates normally at 1.0V and retains data
at 0.3V, which is the drowsy state. Thus, the SER in the
drowsy state is ten times higher than the SER in the normal
state. Based on [5], the SER of a 6T SRAM (70 nm technol-
ogy) cell is 2.7 x 107'* per cycle (1 ns clock period), called
as the raw SER in this paper. According to [35], the proba-
bility that an error occurs depends on the raw SER and how
long data stays in the cache. Consequently, we determine
the Probability of the Soft Error occurrence (PSE) when a
cache line resides in a cache during a T cycle to be:

PSE(mode, T, word _bit)

= 10" % T x word_bit x raw_SER )
where,
de = 1 in the case of the drowsy state
MOAe€ =10 in the case of the normal state

word_bit: the number of cells of a cache line.

In the current technology, most soft errors are Single
Bit Errors (SBE)s. However, as the critical charge Q. is
decreasing over time, there is a need for bit errors of two or
greater to be addressed [36], [37]. The DBE (Double Bit Er-
ror) and the MBE (Multi-Bit Error) differ from multi-SBEs,

TA cache line is an access unit to a cache at a time.
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Fig.1 Two kinds of multiple bit errors. (The squares denote memory
cells)

because they originate from a single upset. Therefore, in
case of the DBE and the MBE, the erroneous cells are al-
ways adjacent, as shown in Fig. 1(a). By contrast, the multi-
SBE implies that two or more SBEs occur in the same cache
line. Erroneous cells are not adjacent, as shown in Fig. 1(b);
in a 32-byte cache line, the probability that two erroneous
cells, induced by a multi-SBE, are adjacent is quite low.
Based on [5], [36], the DBE rate and the MBE rate are 0.01
and 0.0001 of the SBE rate, respectively, at 1.0V supply
voltage. By considering the multi-bit error, we can reformu-
late the equation and determine the PSE to be:

PSE(error_bit,mode, T, word_bit)

— 1001—error_hit % lomode < T
xword_bit X raw_SER 3)

where,

error_bit : the number of soft errors induced
by a single upset.

The Possibility of Multi-SBE occurrence (PMSBE) is:

PMSBE(m_error_bit,mode, T, word_bit)
= PSE(m_error_bit,mode, T, word bit)"-""">!
= (10™ x T x word _bit
raw_SER)"-"""-bit @

where,

m_error_bit: the number of soft errors occurring
in a cache line.

4. Architectural Solutions for Soft Errors

For a reliable drowsy instruction cache, soft errors should
be resolved by selecting the most suitable error correction
methods, depending on their characteristics.

4.1 Single Bit Error

Until now, many error correcting codes have been intro-
duced. They are categorized into time redundancies and
hardware redundancies [38]. The time redundant tech-
niques, which compare results of repeated executions to de-
tect errors, are not suitable for detecting and correcting soft
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Fig.2 Examples of error detection/correction codes in the case of a 2
byte cache line.

errors in an instruction cache. Since time redundant tech-
niques repeatedly execute an operation for several times and
check results, these techniques inevitably increase execution
time. However, instruction cache access directly affects per-
formance. Thus, time redundant techniques are not suitable
for cache error detection/correction. Therefore, we concen-
trate on the hardware redundancies. The ability to detect and
correct errors is highly dependent on the amount of hard-
ware.

Among all types of soft errors, the SBE is most pre-
dominant, accounting for 98 ~ 99 % of all soft errors. The
SBE is detected by parity bits and corrected by Single Bit
Correction Double Bit Detection (SBC-DBD), that is, the
integration of parity bits and ECCs [39], as shown in Fig. 2.
We assume that the cache line in Fig. 2 consists of 2 bytes,
for simple explanation. Gray cells and white cells corre-
spond to the first byte and the second byte, respectively.
Fig. 2(a) depicts parity bits which are commonly used in in-
struction caches. Parity bit cells are additional data cells, the
proportion of which is 1:8, in general. This is a very sim-
ple algorithm and incurs low hardware overhead; however,
it cannot correct a single bit error or detect a multiple (even
number) bit error. The SEC-DED corrects single bit errors.
Its hardware overhead is substantial, as shown in Fig. 2(b).
Though the SEC-DED can correct single bit errors, check-
ing a parity bit is suitable for an instruction cache. This is
because its hardware overhead is reasonable for commercial
processors, since the parity bits were already applied to an
instruction cache. Another reason is that erroneous instruc-
tions can be re-fetched from lower-level memory (or cache),
in order to recover from soft errors in an instruction cache.
In this case, re-fetching overhead is included in the memory
access time when a single bit error is detected. However,
the overhead is expected to be negligible, which is shown in
Sect. 6.

4.2 Double or Multiple Bit Error

The DBE and the MBE were previously considered insignif-
icant. However, as technology shrinks transistor sizes and
the supply voltage decreases, both the probability of the
DBE and the MBE increase, as does that of SBE. Addition-
ally, the drowsy technique, which is one of the most popular



SHIN et al.: ADOPTING THE DROWSY TECHNIQUE FOR INSTRUCTION CACHES: A SOFT ERROR PERSPECTIVE

low power techniques, increases the SER as explained in
Sect. 3.

Many researchers were concerned about the DBE and
published a number of papers about detecting or correcting
the DBE. This is because its probability is increasing, but it
is not detected by parity bits. Though many error correcting
codes have been introduced, most of them are designed for
communication, where the error rate is high. To guarantee
reliability of network communication, data is highly redun-
dant. However, if these error correcting codes were applied
to an instruction cache, they would incur unnecessary hard-
ware overhead.

For this reason, the bit interleaved parity was recom-
mended, which is commonly used to minimize the error rate
of multi-bit errors [36]. The bit interleaved parity assigns
physically adjacent bits to different parity units, since the
DBE or the MBE always has adjacent erroneous bits. When
the parity bits are interleaved, a DBE can be treated as two
SBEs, as shown in Fig. 2(c).

4.3 Multi-SBE

The multi-SBE is two or more SBEs which occur in the
same cache line in a certain cache. The multi-SBE can
be avoided by checking parity bits and correcting SBEs, in
most cases. Though the error rate is still low, it is neces-
sary to guarantee a reasonable level of reliability, due to an
increased SER in the future.

The most appropriate scheme for the prevention of
multi-SBE is scrubbing [24],[33]. During the scrubbing,
all cache lines and their parity bits are checked to remove a
single-bit error. We simulated the scrubbing effect with var-
ious scrubbing periods, and the results are shown in Sect. 6.

5. Harmful/Harmless Error in Normal/Power-Saving
Mode

Soft errors of an instruction cache disappear without caus-
ing any damage, when the erroneous cache line is evicted
without further read operations. Thus, the residence time
for each cache line can be separated into harmful periods or
harmless periods according to whether the following refer-
ence exists or not. In Fig. 3, data are fetched and stored in
an instruction cache at time t1 and evicted at time t5. There
are two reads, at times t1 and t3, and the cache line is wo-
ken up at these times. The cache line is put in the drowsy
mode at times t2 and t4, when the supply voltage is lowered
from 1.0V to 0.3 V. The period prior to the previous read,
‘Read_2,’ is a harmful period, and the subsequent period is a
harmless period. Each of the harmful or harmless periods is
separated into a drowsy mode or a normal mode, based on
the supply voltage. In summary, the residence time for each
cache line is classified into harmful periods in normal mode,
harmful periods in drowsy mode, harmless periods in nor-
mal mode, and harmless periods in drowsy mode. We show
the proportion of each period for applications in Sect. 6.

In the proposed technique an instruction cache consid-

1775

Set to Drowsy Set to Drowsy
Read_1 mode Read_2 mode Evicted

| |

Harmful - Harmless
A Harmful period in AN
period in period in

drowsy mode
normal mode normal mode

Harmless period
in drowsy mode

Fig.3  Error classifications in the drowsy instruction cache.

Table 1
| Description

Notations.

Notation

Hit time of cache_name
Wake-up rate of cache_name
‘Wake-up penalty of cache_name
Miss+Error rate of cache_name
Miss rate of cache_name

Miss penalty of cache_name
Error rate of cache_name

HT cache.name

WRcache name
WPcachename
MER cache name
MR cache.name
MP cache_name

ERcache.name

ers the SBEs as the cache misses, thus, the recovery (re-
fetching) is simple. As a side effect, the cache miss rate and
the AMAT (Average Memory Access Time) will increase.
We calculated the AMAT to be:

AMAT = HTp; X (1 + WRpy X WPpy)

+(HT 1, + MR;» X MPyp»)

XMER; (5)
MER;, = MR;, + ERy;. (6)

Detailed notations are shown in Table 1.
6. Simulations

We implement a soft error generator in ‘SimpleScalar’ 3.0
[40] and evaluate soft error damage in a drowsy instruc-
tion cache. The default configurations of the simulator are:
a 16 KB, 32B cache line, 4-way L1 instruction cache; a
16 KB, 32B cache line, 4-way L1 data cache; a unified
256 KB, 64 B cache line, 4-way L2 cache. The access cycles
for the L1, L2, and memory are 1, 8, and 40, respectively,
at 1 GHz clock frequency. In the drowsy instruction cache,
cache lines are put into the drowsy mode every 2000 cy-
cles and they are protected by bit interleaved parity bits and
scrubbing. The benchmarks are selected from ‘SPEC2000’
[41]. Each benchmark is initially fast forwarded for 300 mil-
lion instructions, then, simulated for 1 billion instructions.
Table 2 gives the SER of a bit cell, for each voltage mode of
the 6T SRAM (70 nm technology).

6.1 Performance Overhead of Re-Fetching Instructions

Figure 4 shows a decomposition of soft errors. In all the
benchmarks, the number of DBEs and MBEs is less than
1%; it is very difficult to find them in Fig.4. Every DBE
is detected by bit interleaved parity bits and corrected by
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Table 2  The soft error rate of a bit cell per cycle [5].
Normal Drowsy Read
State State /Write
Single Bit Error Rate 27e—14 | 277e—-13 | 1.4e—-13
Double Bit Error Rate | 2.7¢e — 16 | 2.7¢e — 15 | 1.4e—15
Multi Bit Error Rate 27e—18 | 2.7e =17 | l4e—-17

=)
&
—

Total Number of Soft Err

gzip | crafty | parser | gap bzip2 |wupwise| mesa | zalgel

| mHarmfulSBE mHarmless SEE = Harmful DRMBE _m Harmless DEMEE |

Fig.4 Decomposition of soft errors.

AMAT(Clogk Cyeles)

egip  oafy  paser  gap bzpl wupwise mess  galgd  at lies  AVG

Fig.5 The AMAT, including wake-up overheads of the drowsy
instruction cache.

re-fetching erroneous instructions. During simulations, a
multi-SBE (an unrecoverable soft error) does not occur.
This is because of its extremely low probability, due to the
high temporal locality of instruction caches. For example,
the average inter-reference time of ‘gzip’ is 689.7 clock cy-
cles, and the probability of an unrecoverable soft error is
6.22e—17 during the period. Note instruction caches are ac-
cessed repeatedly for a short period; thus, the inter-reference
time is short.

Though the total number of soft errors in the drowsy
cache is approximately 9.8 times higher than that of the nor-
mal cache, the total number of soft errors in the drowsy
cache is 59.9, on average. Moreover, 60% of the soft errors
in the drowsy cache are classified as harmless soft errors.
Thus, the drowsy instruction cache has only 24.37 soft er-
rors while executing 1 billion instructions. Additionally, the
harmless error rates for some benchmarks, such as ‘bzip2,’
‘wupwise, ‘galgel,” and ‘art,” are relatively high, because of
the proportions of harmless periods (Fig.4). Program sizes
of these benchmarks are small, therefore, a small number of
instructions are executed repeatedly. Thus, a large propor-
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Fig.6 The AMAT overhead caused by soft errors, excluding wake-up
overheads of the drowsy instruction cache.
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Fig.7  The comparison between the AMAT overhead in a normal cache
and the AMAT overhead in a drowsy cache, with various soft error rates.

tion of the cache is not used and the soft errors are classified
as harmless errors. For instance, the harmless period of exe-
cution of ‘bzip2’ is 91.8% and only 3.12 errors are harmful
errors, out of 50.7 soft errors.

To evaluate soft error damage to the instruction cache,
we examined the AMAT. As shown in Fig.5, the AMAT
of the drowsy cache is 1.096 and that of the normal cache
is 1.071; the AMAT of the drowsy cache is approximately
2.3% longer than that of the conventional cache. Note, Fig. 5
includes the wake-up overhead of the drowsy cache in the
AMAT. The AMAT overhead caused by soft errors is negli-
gible, as shown in Fig. 6, because its probability is 1.09e—7
in the drowsy cache. Thus, most of the AMAT overhead
shown in Fig.5 is not caused by soft error recovery, but
by the drowsy primitive itself, because the cache line in the
drowsy state suffers additional wake-up overhead when it is
accessed. Consequently, the SER is still too low to affect the
performance of the drowsy cache, for current technology.

Though the effect of the soft error on the drowsy in-
struction cache is negligible for current technology, the SER
is expected to increase in the future. To evaluate the SER for
future technology, we simulated the AMAT with accelerated
SERs, from le—14 to 1e—8 (for a bit cell). Table 2 shows
that the current SER of a bit cell per a cycle is 2.7e—14.
Fig. 7 depicts the comparison between the AMAT overhead
in a normal cache and the AMAT overhead in a drowsy
cache. The results were obtained with future SERs. Ob-
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Fig.8 The accumulated PMSBE values.

viously, the overhead for the AMAT increases as the SER
increases. Even though the SER is 1e—8 (which means that
the SER is 2.7e+5 times higher than the current SER level),
the overhead of the AMAT is 0.04 cycles’. Consequently,
when the SER of a cache line is below 1.e—8, the drowsy
instruction cache can be used with negligible overhead to
handle the erroneous cache lines.

6.2 Unrecoverable Error

Though no unrecoverable errors occurred during simula-
tions, the unrecoverable error rate of the drowsy cache must
be higher than that of the normal cache. We use an accu-
mulated PMSBE value for a cache (not a cache line) during
harmful periods. In our simulations (one billion instructions
executed), the accumulated PMSBE in the drowsy instruc-
tion cache and in the normal instruction cache are 7.52e—3
and 7.48e-5, respectively, as shown in Fig. 8. Though the
unrecoverable error rate is still low in any cache, the drowsy
instruction cache is approximately 100 times more vulnera-
ble than the normal instruction cache.

Scrubbing, explained in Sect. 4.3, is an effective way to
mitigate the occurrence of unrecoverable errors. This tech-
nique is based on the idea that SBEs can be fixed by peri-
odically checking the parity bits against the data bits. To
find the optimal scrubbing period, we investigated the ac-
cumulated PMSBE with respect to the inter-reference pe-
riod. We performed simulations using different values for
the scrubbing period; 1.e4, 1.e5, 1.e6, and 1.e7 cycles. As
shown in Fig.8, the reliability of the drowsy instruction
cache approaches that of the normal instruction cache, when
the scrubbing period is 1.e6.

6.3 Power Consumption Evaluation

Though it is clear that the drowsy cache consumes less leak-
age power, scrubbing the cache periodically increases dy-
namic energy consumption. Thus, we evaluated the energy
consumption of the drowsy cache including the dynamic en-
ergy overhead by scrubbing. The leakage energy parameters
are obtained from [42] and the dynamic energy parameters
are calculated from ‘CACTI’ [43]. The parameters of par-

0.20%

Nonmalized dynamic energy overhead

gEp  cafiy  paser  pap  bap) wupwize mesa  pgalgedl  at lueas  AVG

Fig.9 Dynamic energy overhead.

consumption

MNormalized total mstruction cache energy

gzip  crafty paser  gap  bzip) wupwise mesa palgll et lncs  AVG

Fig.10  Total energy consumption.

ity encoding/decoding logics are obtained from [5], and the
scrubbing period is 1.e6 cycles, which is selected in the prior
subsection. According to our CACTI calculation, the cache
access energy for reading a cache line is 0.02528 nJ. The
values for leakage power/bit in the normal mode and in the
drowsy mode are 0.0778 and 0.0167 uW, respectively. The
energy values of parity encoding and decoding are 6.0232
and 7.2239 pJ, respectively.

As shown in Fig.9, scrubbing periodically increases
the dynamic energy consumption by 0.12% on average, and
0.18% in the worst case. Technology advance makes the

"Note that the overhead is not for the CPI(clock per instruction)
but for the AMAT.



1778

leakage energy consumption attract more attention than be-
fore. In [44], the leakage power will exceeds the active
power beyond 65nm technology node. Fig. 10 shows the
total energy consumption of the drowsy cache, which is nor-
malized to that of the conventional cache. We could not find
reliable research showing parameters of the leakage power
of the instruction cache and the dynamic power of parity
logic. Thus, for fair comparison, we simulated with several
ratios of the leakage power to the total power. Simulated ra-
tios were 0.4, 0.5 and 0.6, because the ratio is around 0.5 in
70 nm technology [44]. If the ratio is 0.5, the drowsy cache
with periodical scrubbing reduces the total energy consump-
tion by 32%, onverage. Consequently, the power reduction
of the drowsy cache is significant even if the scrubbing over-
head is considered.

7. Conclusion

This paper presents the first quantitative evaluation of the re-
liability of the drowsy instruction cache, which is regarded
as one of the best power-saving techniques. It has been
widely considered that the drowsy cache is inefficient for
use in future applications because the SER increases expo-
nentially when the supply voltage is suppressed. The key
observation is that instruction caches always store read-only
data. Thus, the drowsy instruction cache overcomes the
soft error problems by re-fetching the corresponding data.
Though the SER is expected to increase in the future, re-
fetching has negligible effect on performance. Therefore, it
is reasonable to apply the drowsy technique to an instruction
cache. The multi-SBE threatens system reliability, because
this problem cannot be resolved with bit interleaved parity
bits. However, the unrecoverable error rate of the drowsy in-
struction cache can be effectively reduced to that of normal
instruction caches by scrubbing.
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