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This paper proposes an efficient topology synthesis method for on-chip interconnection network
based on crossbar switches. The efficiency of topology synthesis methods is often measured by two
metrics—the quality of the synthesized topology and synthesis time. These two metrics are critically
determined by the definition of the topology design space and the exploration method. Furthermore,
an efficient representing method for the design space is required to tightly link the design space
and the exploration method. Even though topology synthesis methods have actively been researched,
most of the previous methods were not deep in thought for these factors. Unlike the previous methods,
we propose a topology synthesis method with a careful consideration of these factors. Our method
efficiently defines the design space by a technique called chained edge partitioning, in conjunction
with a representing method for the points in the space, called enhanced restricted growth function. We
also provide an exploration method which well incorporates with the aforementioned search space.
To prove the effectiveness of our method, we compared our method with previous methods. The
experimental results show that our method outperforms the compared methods by up to 49.8% and

104.6× in the quality of the synthesized topology and the synthesis time, respectively.
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1. INTRODUCTION

The design of communication architecture in system-on-chips
(SoCs) has become more challenging due to the advent of
data-intensive applications such as high-definition videos and
3D games. These applications urge the adoption of multiple
processors into SoCs (so-called MPSoCs) to deal with huge
computation requirement. These applications also produce
high volume of communications among the computation cores
and memories, causing high pressure on their backbone on-
chip interconnection network. Such heavy traffics cannot be
accommodated by the traditional shared bus architecture and its
variants (i.e. multi-layer bus architecture), since their operating
clock frequency relative to that of the computing units becomes
worse as the process technology scales down.

Bus matrix (also called crossbar) is rapidly replacing the
traditional shared busses in contemporary SoC design, since it
provides higher bandwidth than the shared busses by employing
the point-to-point communication architecture. In other words,

a dedicated communication path is allocated to each pair of
masters and slaves. With this architecture, it is possible to
achieve higher bandwidth by allowing multiple concurrent
communications among the computing units and memories.
However, its advantage is diminished when the bus matrix
becomes large, since its operating clock frequency is inversely
proportional to its size which is closely related to the number
of its input and output ports. Partial crossbar solutions were
proposed to tackle this problem by removing unnecessary
connections inside the crossbar and clustering masters and
slaves into local buses [1–5]. However, they are not free from the
limitation of the single crossbar solution since even the partial
crossbar will become unacceptably slow due to ever-increasing
numbers of masters and slaves.

To overcome the limitation, on-chip interconnection network
has been proposed as a promising solution to large scale
systems. There are two classes of studies on on-chip
interconnection network. One is for general purpose multi-core
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systems and the other is for application-specific multi-core
systems. The former basically concerns on the flow control,
routing scheme and other design parameters (e.g. buffer size),
while adopting the regular topology such as mesh and torus.
This architecture is typically called chip-multi-processor (CMP)
architecture. On the other hand, the latter (most of embedded
MPSoCs are in this class) even concerns on the network
topology, since the area and power costs of an on-chip
interconnection network are non-marginal. It is well known
that the topology of an on-chip interconnection network largely
determines these metrics.

Compared with the CMP architecture, there are potential
opportunities in optimizing (or customizing) the topology of
the application-specific on-chip network for area and power
by utilizing the following properties: (i) it is application- or
domain-specific (i.e. it targets a limited set of applications),
(ii) the traffic pattern among the cores and memories are not
symmetric and (iii) the computing cores are heterogeneous
(some of them are hardware accelerators) and have real-
time constraints. By exploiting the aforementioned properties,
it is possible to create custom-tailored irregular on-chip
interconnection networks that are more cost-effective than the
regular ones.

Due to the above reason, optimizing (or customizing) the
on-chip network topology has become a critical design step of
modern embedded MPSoCs. Recently, several works proposed
a cascaded crossbar switch architecture and the corresponding
topology synthesis methods in [6–8]. In this architecture, a
single large central crossbar (or partial-crossbar) switch is
replaced by multiple smaller crossbar switches which are
connected in a cascaded fashion. Figure 1 contrasts the single
partial crossbar switch network and the cascaded crossbar
switch network with irregular topology. The white rectangles
denoted by ‘M’ are master units (e.g. CPU) and those denoted
by ‘S’ are slave units (e.g. memory). Also, the gray rectangles
with inner connections are crossbar switches.A critical problem
in this architecture is to find an optimal topology which
pays the minimum cost (area, power consumption or both)
compared with other possible choices, while satisfying the

given communication constraints (bandwidth and latency).
It is challenging since there are huge possible topological
choices for a given specification. This is the motivation of the
topology synthesis of the cascaded crossbar switch network
which automatically determines the connections among the
master units and slave units by the appropriate selections and
connections of crossbar switches. It has been shown that the
cost and the performance of a design critically depends on the
quality of the topology synthesis methods [6–8].

Many custom topology synthesis methods for network-on-
chip have been proposed in [9–15]. These works usually assume
peer-to-peer communication and packet-switched network,
while the cascaded crossbar networks assume master–slave
communication and circuit-switching. Even though their
natures are somewhat different from each other, their topology
synthesis problems are quite similar in the sense that they are
both to determine the connections among the IPs and switches.

The efficiency of a topology synthesis method is typically
measured by two metrics—the quality of the synthesized
network and synthesis time. However, the previous works were
not deep in thought to identify the major factors affecting
these two metrics. More specifically, the aforementioned two
metrics are critically affected by the definition of the topology
search space (or design space) and its exploration method. Since
the design space and the exploration method have different
abstraction levels, a representing method is required to translate
the design space into the data structure of the exploration
method. Hence, the synthesis quality and time are also affected
by the representing method. Unfortunately, previous methods
focused on only part of these three factors, thereby missing at
least one of them in their implementation. We will discuss the
details of previous methods in Section 2 with respect to these
three factors.

In this work, we propose a topology synthesis method that is
designed with the careful consideration of these three factors.
The contribution of our work can be summarized as follows.
First, we define the search space by a technique called chained
edge partitioning (CEP) in conjunction with the enhanced
restricted growth function (ERGF). With these techniques,
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FIGURE 1. An example of cascaded crossbar network.
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the design space only includes the legal design points. A
topology at each legal design point guarantees that it provides
all the paths required by the specification. In other words, our
method automatically prunes out the topologies in which the
required paths are not provided by the efficient definition of
the search space. Second, we propose a representing method
called ERGF which helps to identify the isomorphic design
points to avoid re-evaluation of the same topology. Finally, we
propose an exploration method which well incorporates with
the aforementioned search space.

The rest of this paper is organized as follows. In
Section 2, we summarize the previous methods with their
drawbacks. In Section 3, we define our topology synthesis
problem. In Section 4, we present the proposed method in
detail. In Section 5, we show the effectiveness of our method by
comparing it with previous methods and Section 6 concludes
our work.

2. RELATED WORKS

Several works have been proposed to improve the bandwidth
and latency of the shared bus architecture by employing
sophisticated arbitration schemes [16–18] and by physically
segmenting the bus to enable concurrent communications
[19, 20]. Medardoni et al. [21] analyzed the effect of the
protocol, bridge design and traffic pattern on the hierarchical
bus architecture and Drinic̀ et al. [22] proposed the automated
design method for hierarchical bus architecture. Although these
methods greatly improves the performance of the shared bus-
based architectures, the shared nature of the bus limits the
performance and the scalability.

The works in the early stage of the switch-based on-chip
network topology synthesis mostly focused on the exploration
method, hence the search space was not well refined. Many of
them used adjacency matrix-based representation to specify the
entire search space. Using the adjacency matrix, they represent
the connections between the masters, slaves and switches [7–
10]. These works mostly solved the topology synthesis problem
with the mathematical formulations which yield the exact
solution. Even though the synthesis quality of their methods
is optimal, the synthesis time is prohibitively large due to
the inefficient search space which includes a lot of infeasible
design points. For this reason, their methods are applicable
to only small-scale problems and should be extended in a
heuristic manner for larger scale designs. For instance, the
works in [9, 10] proposed topology synthesis methods using
mixed-integer linear programming (MILP) where the decision
variables are the elements of the adjacency matrices. The
refinement on the search space was more elaborated in [7],
but they still suffered from the long synthesis time. Later,
they proposed a heuristic method based on the input merging
technique [8].

The works in [11, 12] proposed clustering (or partitioning)-
based heuristic algorithms. They were aware of the synthesis

time issue and put limits on the search space. The refined search
space often excludes a part of feasible design points, yielding
inferior synthesis quality. The work in [14] improved the
exploration efficiency by considering the management policy
of the explored design points. They record the explored design
points in a tabu list and check this list first before the new design
point is evaluated. The advantage of this approach becomes
marginal when a long tabu list is employed, since the full search
of the tabu list for every design point incurs a large computation
overhead.

The works in [6, 15] made a good contribution in
the search space reduction. They formulated the network
topology synthesis problem as clustering (or partitioning) of
communication edges. The former proposed a method named
traffic group encoding in which an ordered set of edge sets
is always interpretable to a legal implementation. Since the
reduced search space is still large, they explore the search space
using simulated annealing with random moves. Such random
moves often visits the design points already explored, which
depreciate the impact of the search space reduction. Also, the
synthesis quality is a concern when the deign time is tightly
constrained. On the other hand, Yan and Lin [15] claimed that
the topology synthesis problem can be mapped to a partitioning
problem of the given communication edges. Their method is
limited to direct network topologies, thereby missing more
efficient indirect network topologies.

3. PROBLEM DEFINITION

In this section, we define the topology synthesis problem
and introduce the notations used for the definition. In
our formulation, we consider a cascaded crossbar switch
architecture which is irregular from the topological point
of view. The on-chip network topology synthesis problem
is to determine the connections between the masters (more
precisely, ports with master interface on IPs) and the switches,
between the slaves (more precisely, ports with slave interface
on IPs) and the switches and between the different switches,
while the communication requirements (bandwidth and latency)
specified on each master-slave pair are satisfied. The objective
of the synthesis is to minimize the cost, which can be the
area, the power consumption or both. The communication
requirements of a given application is the input of our method
and given as a graph called communication requirement
graph (CRG).

(i) A CRG is a directed bipartite graph G(VM, VS, E) where
vm ∈ VM denotes a master, and vs ∈ VS denotes a
slave.An edge e ∈ E denotes a communication between
vm and vs. src(e) and dst(e) are the source (master)
and the destination (slave) of the edge ‘e’, respectively.
Also, bw(e) and lat(e) denote the bandwidth and latency
constraint of the edge ‘e’, respectively.
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Since the cost of the synthesized design is determined
by the cost of the switches used in the network, we also
need the physical information of the switches of various
sizes.

(ii) XAi,j , XPi,j and XFi,j are the area, power consumption
and frequency of a crossbar switch with i input ports and
j output ports. ρ is the area of the pipeline stage unit. We
obtain this information from the register transfer-level
synthesis of the crossbar switches and pipeline stage.

A topology is feasible if it satisfies all the given
communication requirements, and it is infeasible otherwise.
Also, we call a topology legal if it provides the required paths
regardless of the bandwidth and latency constraint satisfaction,
and illegal otherwise.

We adopt the basic assumptions for the cascaded crossbar
network, such as single path routing and single link between
two switches, from [7]. In this work, we consider AMBA 3.0
AXI as the target on-chip interconnection architecture, hence the
details of the target architecture can be found in [23]. Note that,
however, our method is not limited to a specific architecture but
applicable to other architectures with the minor modifications,
if necessary.

Then, our topology synthesis problem is to find a feasible
topology, given the CRG and the physical information of the
network components (XA, XP, XF and ρ), such that the target
cost is minimized.

4. PROPOSED TOPOLOGY SYNTHESIS METHOD

4.1. Overview

The fundamental issue in on-chip topology synthesis is
attributed to the large design space. Hence, it is crucial to
tightly define the design space and efficiently explore the
design space. Furthermore, the representing method of a design
space is closely related to the quality of the exploration
method. For instance, a bad representing method will produce
several different representations for an identical design
point.

To tackle these points, we first define a topology design space,
using a novel method called CEP (see Section 4.2). An ideal
design space contains all feasible solutions, while excluding all
infeasible or trivial solutions as many as possible. The aim of
CEP is to define a design space as close as the ideal design space
and we discuss the details of CEP in Section 4.2.

Second, we propose a representing method of a CEP-based
design space called ERGF. ERGF translates each design point
in the design space into a unique set of number sequences
(Section 4.3). Such uniqueness eliminates the isomorphic
representations, hence protecting to revisit the design points
already explored. As will be shown in Section 4.3, a number
sequence generated by ERGF (ERG sequence for short)
corresponds to a unique partitioning of edges in a certain stage,

representing each point in the design space 
with a unique set of ERG sequences

systematic exploration of the design space 
avoiding revisit to the already visited points

design space containing lots of 
infeasible or trivial solutions
e.g.) design space defined by 
adjacency matrices 

design space containing 
only the feasible solutions, 
defined by CEP

FIGURE 2. The interactions of three key factors of the proposed
synthesis method.

and thus a set of ERG sequences of all stages corresponds to a
unique design point in the CEP-based design space.

Finally, we present an efficient design space exploration
method based on ERGF (Section 4.4). Even though the design
space definition and the representing method are efficient, a
poor exploration method can depreciate their benefits. For
example, the exploration may guide us to visit the same design
point repeatedly, while ignoring some other design points in
the design space throughout the synthesis process. With the
proposed exploration method, it is possible to visit every design
point (with the highest effort) in the design space only once,
thereby never wasting time to evaluate a single design point
more than twice.

Figure 2 shows the interactions of the aforementioned three
key factors. To summarize, CEP contributes to the topology
synthesis by tightening the design space, whereas ERGF helps
the exploration method by providing unique representation for
each design point. The ERGF exploration method efficiently
searches the design space by avoiding the revisit to the design
points already explored.

4.2. Feasible design space definition

In the proposed method, we map the application-specific
network topology synthesis problem to the successive
partitioning of the communication edges for a fixed number
of stages. The number of stages means the maximum number
of switches a communication can traverse, usually called hop
counts. We name the method CEP after its behavior. The benefit
of CEP is that it contains only the legal topologies with the help
of ERGF. Note that the legality of a topology is a necessary
condition for the feasibility, i.e. if a topology is illegal, it is
definitely infeasible. Since CEP implicitly prunes the illegal
design space, the search space for the feasible topologies can
be better confined. Before explaining the procedure, we first
define several terminologies.

Definition 1. A partition pk
i is a set of edges which is

generated in kth stage of CEP where i is the partition index.
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input E0 = E in CRG
maximum number of stage N

initial stage index k = 1

(step 1) Generate P k, a partition set of Ek−1.
(step 2) Generate new edge set Ek from each

partition in P k to the slaves.
(step 3) Increment k by 1
(step 4) If k = N , stop and evaluate the topology.

Otherwise go back to (step 1)

FIGURE 3. The procedure of generating a topology by CEP.

A partition corresponds to a switch node in the topology graph
T , except pk

0 . For all stages, pk
0 is a bypass partition which

transparently passes the edges to the next stage, and is not
translated to a real switch.

Definition 2. ek
i ∈ Ek is an edge generated after the

partitioning in kth stage such that src(ek
i ) is one of the switches

generated in the kth stage and dst(ek
i ) is one of slave in the

CRG. E0 is same as the E in CRG.

Definition 3. A partition set P k is a set of partitions in
kth stage of CEP which is obtained by the edge partitioning.
The edge partitioning is grouping the edges into the one or
more subsets such that the sets are disjoint and exhaustive, i.e.
pk

i ∩ pk
j = ∅ if i �= j and ∪ip

k
i = Ek−1. �k is the set of all

possible partition sets in kth stage, whose element P k
i denotes

a unique partition set in the stage. For convenience, we omit the
index i if it is not of importance.

Definition 4. A topology T is an N -tuple of partition sets
such that T = (P 1, P 2, . . . , P N), where N is the given number
of stages. � is the set of all the topologies, whose element Ti is
a unique point in the set.

The procedure of generating a topology instance by CEP is
shown in Fig. 3.

The procedure takes the set of edges in the CRG (E0) and the
maximum number of stage N . The physical meaning of N is the
maximum number of crossbars that a traffic between a master
and a slave can traverse in the network. It can also be understood
as the maximum hop count physically bounded by the network.
Hence, the master–slave pairs in a single network may have
different number of crossbars in their paths. For example, if we
set N to 3, some master–slave pairs may have three crossbars
in their paths, while other pairs may have one or two crossbars.
With these inputs, it performs edge partitioning and generates
the partition set of the first stage P 1 (Step 1). Next, the new
edges are generated from each partition p1

i to the slaves, and
these edges make up the new set of edges E1. When a new
edge is generated from the partition of the previous stage, its
bandwidth and latency are calculated as follows.

bw(ek
i ) =

∑

e∈Dk
i

bw(e) (1)

lat(ek
i ) = MINe∈Dk

i
lat(e) (2)

where Dk
i = {e|e ∈ Ek−1 ∧ dst(e) = dst(ek

i ) ∧ e ∈ src(ek
i )}. At

this point, the connections between the masters and the switches
in the first stage is determined. If N = 1, the procedure stops
and evaluates the current topology, but if N > 1, it performs
the partitioning of E1 to determine the connections between the
switches in the first stage and second stage. This procedure is
repeated until the N th stage connections are determined (Steps
3 and 4).

Figure 4 shows an example of this procedure with the
maximum number of stages of 2. Figure 4a is the initial CRG
where m0 to m4 represents the masters, s0 to s2 the slaves and e0

to e7 the edges. First, the edges in the CRG are partitioned into
arbitrary number of partitions, where each partition represents
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(c) Established network topology

FIGURE 4. Establishing network topology by using CEP.
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a switch to which the allocated edges are connected. Since a
master can be connected to exactly one switch, the edges from
the same master must be in the same partition in the first stage.
Let’s assume that e0, e1, e3 and e4 are allocated to the same
partition (p1

1), e2 and e5 to the second (p1
2) and e6 and e7 to

the third (p1
3). Then, the resulting graph is shown in Fig. 4b,

where the filled rectangles are the switches and e1
0 to e1

6 are
newly generated edges by (Step 2) in Fig. 3. Note that, when
a new edge is generated from the partition of the previous
stage, the bandwidth is accumulated and the latency is taken
as the minimum. For example, bw(e1

0) = bw(e0)+bw(e3), and
lat(e1

0 = MIN(lat(e0), lat(e3)). In this state, the edges between
masters and switches are physical links but those between
switches and slaves are still abstract edges, not physical links.

In the next step, the same partitioning process is performed
with these edges e1

0 to e1
6. Since we are assuming two-stage

network, the switches which will be generated now must give
legal connections to the slaves. In other words, since a slave
must also be connected to a single switch just as a master, the
edges to the same slaves must be assigned to the same partition.
In this example, we assign e1

0 to the bypass partition (p2
0), and

the other edges to the first partition (p2
1). A bypass partition

just bypasses the edges allocated to it to the next stage (in this
example, to the slave s0) and is not translated to a real switch.
The resulting network topology is shown in Fig. 4c. Note that if
we assume more stages than two, in the intermediate stages (i.e.
1 < k < N ), the edges from (to) the same switch (slaves) do not
need to be partitioned into the same partition (see Section 4.3).

In CEP, a partition set corresponds to a unique connection at
the stage: if two partition sets are different, it means that at least
an edge in the first partition set is in the different partition in
the second partition set. It means that the edge is connected to
the different switch, and therefore the physical realization of the
two partition sets are distinctive. Also, with a limited number of
stages N , it can represent all the possible topologies. To prove it,
we need to first understand that the partition set at a certain stage
can represent all possible connections between the current and
the previous stages. Suppose three extreme cases: (i) all edges
are assigned to the same non-bypass partition, (ii) all edges are
assigned to different partitions and (iii) all edges are assigned
to the bypass partition. The first case corresponds to the single
switch connection where the masters or switches in the previous
stage are connected to the single switch in the current stage.
The second case is where each edge is assigned to its dedicated
switch, thus the number of switches is the maximum.1 The last
case is where all edges are assigned to the bypass partition, thus
the entire stage is transparent. Then, the partition sets between
these extreme cases can represent all the possible connections
between the current and the previous stages. Since the design
space of CEP is all the possible combinations of the partition
sets of all the stages, it contains all the possible topologies for

1In our method, this case is prohibited since it results in trivial connection,
i.e. generating 1 × 1 switches (see Section 4.3).

the given number of stages. Note that since a stage can entirely
be bypassed, the design space with larger N comprises that with
smaller N . Even though not every partition set can be translated
to a legal implementation (e.g. all edges are bypassed for all
stages), these illegal partition sets can easily be detected and
avoided by the simple rules before the expensive evaluation
phase, which will be discussed in Section 4.4.

4.3. Representation for ordered design points with ERGF

As aforementioned, a partition set can be realized into a unique
connection at a certain stage, and it is obviously a desired
property to explore the design space efficiently. However, this
benefit can be depreciated if the same partition set is repeatedly
generated while exploring the design space. Therefore, we need
a representing method with which we can easily know which
partition set is already visited or not. In this section, we propose a
representation for the partition set which is the enhanced variant
of the restricted growth function. The original restricted growth
function [24] generates a sequence S according to the following
rule.

rgi+1 ≤ 1 + max(rg1, rg2, . . . , rgi ), (3)

where rgi is an element of the sequence S, and the length of the
sequence is the same as the number of elements in the set to be
partitioned. In the set partitioning with the restricted growth
function, the element rei corresponds to the partition index
to which the element i is allocated. For example, a sequence
(0, 1, 1) represents that the first element of the set is allocated
to the partition 0, and the second and the third elements to
the partition 1. A restricted growth sequence (i.e. the sequence
generated by restricted growth function) can be realized into a
unique partition set [24]. Note that, since (0, 1, 1), (1, 2, 2) and
(2, 3, 3) result in the same partition set (there are two partitions
and the allocations of edges are the same), the first element of
the restricted growth sequence is always fixed to the minimum
value (typically 0 or 1) for all the partition sets.

However, the restricted growth function is not suitable for the
partitioning of our concern because we use the partition 0 as a
special purpose, the bypass partition. For example, if the first
edge is not allocated to the bypass partition (i.e. rg1 is larger
than zero), then no other edges can be bypassed because the
other elements cannot be less than rg1. On the other hand, if
we use zero as the minimum value of the sequence, then rg1
should be always zero for all sequences, which means that the
first edge is always bypassed.

In order to represent the partitioning of our concern, we
propose the ERGF. In ERGF, we add six modifications (one
relaxation and five restrictions) to the restricted growth function,
as follows:

(i) Relaxation: a dummy element re0 is assumed before
the beginning of the sequence and it is fixed to zero.
With this modification, the first element of the sequence
rg1 can be either zero or one, and any element in the
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sequence can be zero even if all the preceding elements
are greater than zero.

(ii) Restriction 1: the edges from (to) the same master (slave)
must be allocated to the same partition. The purpose
of the restriction is to avoid the infeasible topology
generation. Since a master (slave) means a ports on an
IP, it cannot be connected to multiple switches.

(iii) Restriction 2: at last stage, the edges allocated to the
bypass partition must be from the same node (either
master node or switch node). The purpose of the
restriction is to avoid the infeasible topology generation.
If the restriction is violated, multiple links from different
sources are directly connected to a slave, which is
infeasible since a slave represents a single port with
slave interface.

(iv) Restriction 3: at the last stage, the edges from master
nodes (not from the switch nodes) cannot be allocated
to the bypass partition. The purpose of the restriction
is to avoid the infeasible topology generation. If the
restriction is violated, a master can directly be connected
to a slave. A direct connection can be possible if the
master and the slave communicate only each other, but
if so, that kind of local connection will be isolated from
the complex on-chip network topology design.

(v) Restriction 4: each number except zero must be
appeared at least twice in the sequence. The purpose
of the restriction is to avoid generation of 1 × 1 switch.
A partition with only one edge assigned to it will be
realized into a switch with single input port and single
output port, which is meaningless. Since the bypass
partition passes the allocated edges to the next stage,
not being realized into a switch, zero can be appeared
arbitrary number of times in the sequence.

(vi) Restriction 5: the edges from a switch which has only
one slave interface port cannot be allocated to the same
non-bypass partition. The purpose of the restriction is to
avoid generation of 1×1 switch. For example, if the first
to third edges are from the same switch in the previous
stage which has only one slave interface port, the ERGF
bans the sequence (1, 1, 1,…).

As an example of using ERGF, the partition sets of the edges
and the corresponding ERG sequences (ERG sequence means
a sequence generated by ERGF) are shown in Fig. 4b and c.

By using the ERGF, we can represent only the legal partition
sets. Like the original restricted growth function, each ERG
sequence corresponds to a unique partition set. Also, due to its
convenience of handling, we can easily control the generation
of the partition sets which have been already visited. With the
help of these properties of ERGF, we can efficiently explore the
huge partitioning space. The formal definitions are as follows.

Definition 5. RGk = [rgk
1, rgk

2, . . . , rgk
n], where n is the

number of elements to be partitioned, is an ERG sequence in
kth stage. �k is the set of all the possible ERG sequences in the

stage k, and RGk
i is a unique element in the set. For convenience,

we omit the index k and/or i if they/it are/is not of importance.

Definition 6. V is a N -tuple of the ERG sequences of all the
stages such that V = (RG1, RG2, . . . , RGN). � is the set of all
the possible V ’s and Vi denotes a unique element in �.

Then, there are one-to-one correspondences between RGk
i ∈

�k and P k
i ∈ �k , and Ti ∈ � and Vi ∈ �.

Definition 7. An ERG sequence RGi is greater than RGj

(RGi>RGj ) if there exists 1 ≤ q ≤ n such that rgi,q>rgj,q and
rgi,r ≥ rgj,r for all r < q, where rgi,q is the qth element of RGi

and n is the length of the sequence. It can be also said that RGj is
smaller than RGi . Then, incrementing an ERG sequence means
changing the sequence so that the new sequence is greater than
the current sequence. Also incrementing an ERG sequence by
one means incrementing the sequence so that there exists no
other sequence which is greater than the current sequence and
smaller than the new sequence.

Incrementing RGk is analogous to incrementing an n-ary
number, where the first element (rg1) corresponds to the most
significant digit, and the last element (rgn, if there are total
n edges) to the least significant digit. For example, if there are
four edges to be partitioned, the smallest sequence is (0, 0, 0, 0)
and the largest is (1, 2, 2, 1) (by Restriction 4) unless it violates
the other restrictions of ERGF.

Definition 8. Incrementing V means incrementing any RGk

in V . Incrementing V by one is to find the largest k′ in the
range 1 ≤ k ≤ N , increment RGk′

by one, and reset RGk’s for
k′ < k ≤ N .

Incrementing V is also analogous to incrementing an n-ary
number where the first element of the tuple RG1 corresponds to
the most significant digit and the last element RGN to the least
significant digit.

4.4. Topology design space exploration

Here we introduce how to explore the network topology design
space with CEP and ERGF. Basically, we explore the topology
design space by incrementing RGk’s and V . Since RGk’s and
V are always in their increasing direction, the same Vi ∈ � is
visited only once.

The pseudo-code for the synthesis procedure is shown in
Fig. 5. The procedure takes the application’s communication
requirement (i.e. CRG), the physical information of the switches
and the maximum number of stages N as inputs. The synthesis
starts by generating the initial ERG sequence RGk’s for each
stage 1 ≤ k ≤ N , and the corresponding topology (lines 1–3).
The initial RGk’s are all zero sequences, except the RGN is
all one sequence. This set of sequences represents the single
switch topology, where the edges bypass the first N − 1 stages
and are connected to the only switch in the last stage. Note
that these initial ERG sequences make V the smallest. After the
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Design of On-Chip Crossbar Network Topology Using CEP 911

Procedure CEP kernel
library CRG, XF , XP , XA, ρ

input maximum number of stages N

effort parameter γ

output network topology

1: E0 = E in CRG;
2: generate initial RGk’s for 1 ≤ k ≤ N ;
3: generate initial topology;
4: while (!V →maximum reached)
5: for (k = N ; k ≥ 1; k − −)
6: if (!RGk →maximum reached)
7: k = k;
8: break;
9: endif

10: endfor
11: for (k = k ; k ≤ N ; k + +)
12: increment(RGk, γ );
13: allocate e ∈ Ek−1 to switches;
14: generate Ek;
15: if (k = N) reset RGk+1;
16: endfor
17: evaluate topology;
18: if current topology is the best then save it;
19: endwhile

FIGURE 5. Topology synthesis procedure with CEP and ERGF.

initial topology is generated, it searches which stage is not fully
searched, i.e. which RGk can be incremented, from the last stage
to the first stage (lines 5–10). It is analogous to incrementing
the less significant digit prior to the more significant one when
incrementing a number. If the stage is found, let’s say the
stage k′, the sequence of that stage RGk′

is updated, which
means that the connections between the stage k′ − 1 and k′
is changed. When the RGk′

is updated, the RGk’s for k′ < k

are reset to the minimum sequence since the connections of
the previous stages are changed (lines 11–16). As an analogy,
it is similar to incrementing a decimal number 109 to 110,
where the last digit is reached its maximum, so increment the
second digit by one, and then last digit is reset to the smallest
value. At the end of the loop from lines 11 to 16, a candidate
topology is generated. At line 17, the candidate topology is
first examined for its feasibility, i.e. the bandwidth and latency
constraint satisfaction, and evaluated for the cost such as area
and power consumption.According to the cost function given by
the designer, the best topology is saved in line 18. This operation
is repeatedly performed until the V is reached its maximum.

Even though we can explore the partition sets of each
stage only once without revisiting already visited one, the
number of partition sets increases dramatically as the number of
elements increases. In the set partitioning problem, the number
of partition sets of the set having n elements equals nth Bell

Number [24], which is greater than 4M when n = 10. Therefore,
exploring the entire search space of CEP will be very time-
consuming for large problems, even though a lot of partition
sets are pruned by ERGF. Instead, we randomly increment the
ERG sequence based on probability, not increment one by one.
Since this random increment misses some design space, we
compensate it by performing the synthesis procedure for several
iterations.

The random increment of the ERG sequence is controlled
by the effort parameter γ . Two different properties of the
exploration are determined by γ : (i) the probability of
incrementing the ERG sequences one by one or randomly, (ii)
the probability of each element of the ERG sequence to be
incremented when the random increment is used. For the first
property, γ directly indicates the probability of incrementing the
sequence one by one, thus the random increment occurs with
the probability of 1 − γ . For the second property, γ determines
the probability of each element to be incremented with the
following relation.

p(rgi ) = α × iγ , (4)

where p(rei ) is the probability of rgi to be incremented by
one, and α is the fraction to make

∑
i p(rgi ) = 1. Note that

the exploration skips larger space with smaller γ . If γ =
1, the exploration becomes exhaustive search. On the other
hand, if γ = 0, the ERG sequences are always incremented
randomly and all the elements are incremented with the uniform
probability.

The synthesis procedure for γ < 1 is shown in Fig. 6. In
the procedure, we perform the procedure CEP_kernel in Fig. 5
for multiple times to compensate the randomness. However,
this can fade the benefit of the proposed exploration method by
allowing the revisit to the already visited points throughout the
iterations. To resolve it, we isolate the design space in a certain
iteration by forcing some elements in the ERG sequences to
certain values. For example, if we perform five iterations, the
first two elements of RG1 can be forced to (0,0), (0,1), (1,0),
(1,1) and (1,2) in each iteration, respectively. We call these

Procedure CEP rand
input N, γ < 1

number of iterations K

output network topology

1: for (n = 2; n ≤ N ; n + +)
2: for (k = 1; k ≤ K; k + +)
3: CEP kernel(n, γ);
4: if current topology is the best then save it;
5: endfor
6: if a feasible solution is found then break;
7: endfor

FIGURE 6. Synthesis procedure for γ < 1.
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912 M. Jun and E.-Y. Chung

TABLE 1. Effect of N .

Area (mm2) Power (mW) Time (s)

N 2 3 2 3 2 3

App I fail 0.472 fail 17.15 0.095 0.7
App II 0.495 0.491 8.027 8.015 1.401 27.195
App III 0.487 0.491 2.991 3.038 3.789 43.968
App IV 0.541 0.542 3.249 3.328 9.667 76.417

sequences as compulsion sequences. If the number of iterations
exceeds the number of compulsion sequences, we can either
increase the length of the compulsion sequence or wrap around
to the first sequence. In latter case, the revisit problem can occur,
but the worst case number of revisit to the same point is reduced
to the number of iterations divided by the number of possible
compulsion sequences (five in the above example).

Also, given the maximum number of stages N , the procedure
CEP_kernel is repeatedly performed while increasing the
number of stages from 2 to N until a feasible solution is
found, so that the design space with smaller number of stages
(or cascading depth denoted as n) can be explored first.2 N ,
the maximum number of stages, can be determined by the
experience of user. However, it can be set to the infinity when the
user is ignorant of the given design and/or our method. Hence,
CEP_rand finds a feasible solution which has the smallest
number of stages among all possible feasible solutions. Note
that we do not need CEP_rand when γ = 1, since this setting
drives the CEP_kernel to exhaustively search every possible
topology candidate in the design space with N number of
stages. The basic rationale of CEP_rand is that smaller hop
count is favored for low latency and low power consumption
from the network’s perspective. The experimental results shown
in Table 1 support the rationale, since the increase of the
cascading depth marginally improves the solution quality, when
our method finds a feasible solution with a smaller cascading
depth.

To summarize, our method provides a control mechanism
to trade off the solution quality and the computation time by
controlling the parameters—γ , N , and the number of iterations
like other heuristic methods. For instance, the work in [6]
uses a simulated annealing-based exploration method which
takes parameters such as acceptance probability and termination
condition, and the work in [14] uses tabu search method which
takes the size of tabu list as its parameter.

2We ignore N = 1 since it is trivial. If N = 1, the problem is just to
distinguish disjoint communications (i.e. local traffics) from each other in CRG.
If there is no disjoint communication, the single switch topology is the only legal
solution.

5. EXPERIMENTAL RESULTS

5.1. Experimental settings

We evaluate the proposed method in terms of synthesis time and
the solution quality. We compare the proposed method (CEP)
with the methods in [7] (MILP) [8] (MIRO) and [25] (TGE +
GEN). The first two methods represent the topology synthesis
problem with adjacency matrices and solve it by MILP. The
work in [8] combines the MILP with the input-merging
technique and solves the large problem in a divide-and-conquer
fashion, to reduce the synthesis time. TGE+GEN represents the
topology design space with traffic group encoding and explores
the design space with genetic algorithm. Since the design space
of TGE+GEN involves the insertion of frequency and data-
width conversion bridges, while the other methods assume
the single frequency and single data-width of the network, we
manipulate the inputs to TGE+GEN so that the bridges are not
generated, and neglect the cost of the components which are
not considered in our design space. We will also show the effect
of the design parameters—the maximum number of stages N ,
effort parameter γ and the number of iterations, on the solution
quality and the synthesis time.

We apply the methods to four real-world applications which
were used in the compared works. The first one is an mpeg4
decoder application (App I) in [10],3 which has nine masters
and three memories. The second one is an multimedia SoC
application (App II) which has 12 masters and 4 slaves [7].
The masters and slaves include video codecs, graphics IPs,
ARM11, DDR and NAND Flash memory. The third application
is a mobile multimedia player (App III) having 12 masters and
5 slaves [25], and the fourth is a mobile application processor
application (App IV) with 14 masters and 5 slaves [25]. The
CRGs for the four applications are shown in Fig. 7. The
white ovals are masters and shaded ovals are slaves. The solid
lines among them are edges, where the denoted values are the
bandwidths in MB/s and those in the parenthesis are latencies
in microseconds.

For the physical information of the switches, we generated
Verilog RTL codes for AXI [23] crossbar switches, sizing from
1×2 to 9×16, and pipeline register, and synthesized them using
Synopsys Design Compiler with 90 nm process library. CEP,
MILP and MIRO are implemented in C++, and TGE+GEN is
implemented in Java. We performed the topology synthesis for
two design goals: minimizing the area and the power consumed
by the crossbars and pipeline components. The power model
in [25] is used for the power calculation.

5.2. Sensitivity analysis on design parameters

In this section, we examine the sensitivity of the proposed
method on the design parameters, i.e. the maximum number

3The bandwidth is arbitrarily divided into read and write, and the latencies
are also added arbitrarily.
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FIGURE 7. CRGs of the four applications.

of stages N , the effort parameter γ and the number of iterations
when random increment is used.

Figures 8a–c show the effect of γ on the solution quality
and the synthesis time, with the number of iterations fixed
to 15. N is set to 2 for all applications except for App I.
For App I, N is set to 3 since no solution is found with
smaller N . Even though the number of masters and slaves of
App I is the smallest among the applications, it requires the
frequency of 340.75 MHz (the channel is 32 bit wide) to satisfy
its bandwidth requirement, while the other applications require
<250 MHz. The reported area values are from the synthesis
with the objective of area minimization, while the power values
are with power minimization. We run the synthesis 10 times for
each application4 and took their average. In Figure 8a and b, a
number is annotated to each evaluation point ofApp I to indicate

4It means that the procedure CEP_rand in Fig. 6 is performed 10 times.

the number of ‘fail’ runs out of 10 runs. A run is said to be fail, if
it does not find any feasible solution. Rather than excluding the
fail runs for computing the average area, we penalize the fail
runs by setting its area and power to the twice the maximum
value among the non-fail runs. Except App I, no fail happened
for the other applications.

As γ increases from 0.5 to 0.8, the area (power) is saved
by 36.4 (37.3), 9.1 (18.1), 11.8 (13.8) and 9.8% (10.7%) for
App I, App II, App III and App IV, respectively. Except App I
where the penalty for the fail runs greatly affects the average
value, 10.2% (14.2%) of improvement is achieved on average by
increasing γ from 0.5 to 0.8. While the improvement is <20%,
the synthesis time is increased by up to 57.2× (App IV) and
35.3× on average, as shown in Fig. 8c. Thus, it is necessary to
trade off the solution quality and the synthesis time. We pick
the γ of 0.7 as a tradeoff point. In this point, the solution quality
is only degraded by 2.5% and the synthesis speedup is 3.5, on
average against when γ is 0.8.
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FIGURE 8. Sensitivity on the design parameters, γ and the number of iterations.

Next, we examined the effect of the number of iterations
on the solution quality. We fix the first two elements of the
ERG sequence in the first stage, i.e. rg1

1 and rg1
2. The possible

pairs of (rg1
1 and rg1

2) are (0,0), (0,1), (1,0), (1,1) and (1,2).
Each of them is allocated to each iteration to force the five
iterations to search five different sub-design spaces. Since this
setting dedicates each iteration to each sub-design space, there
is no chance to visit the same design point with our method.
However, if the number of iterations is larger than 5, some of
the sub-design spaces will be explored multiple times. More
precisely, the exploring frequency of each sub-design space is
the number of iterations over the number of sub-design spaces.
If the exploring frequency of a sub-design space is larger than 1,
a design point in the sub-design space may be visited more than
once by different iterations. For this reason, the efficiency of the
preceded iteration is higher than that of the succeeded iteration.
Figure 8d well supports this claim. Except App I, N and γ

are fixed to 2 and 0.7, respectively. For App I, we set N to 3
and γ is unchanged. Throughout 10 runs, we performed the
area and power sensitivity analyses of the proposed method
with respect to the number of iterations as shown in Fig. 8d
and e, respectively. As in Fig. 8a and b, the number of fail runs
is annotated to each evaluation point of App I. Increasing the
number of iterations improves the area <5% and power <10%
in the applications other than App I. The observation indicates
that single iteration for each sub-design space produces a fairly
good solution thanks to the tight design space. It also indicates
that the efficiency of the succeeded iterations is much lower
than that of the first iteration due to the revisits of already

TABLE 2. Variance over ten synthesis runs.

Norm. area Norm. power Norm. time

min max std. min max std. min max std.

App I 0.88 1.18 0.10 0.88 1.11 0.07 0.85 1.14 0.08
App II 0.97 1.02 0.01 0.98 1.06 0.03 0.75 1.19 0.12
App III 0.99 1.07 0.02 0.89 1.11 0.07 0.92 1.08 0.05
App IV 0.97 1.05 0.03 1.00 1.04 0.01 0.91 1.23 0.09

explored design points. Note that the fail penalty at low number
of iterations distorts the same observation in App I.

The results from the 10 synthesis runs can vary due to the
randomness which exists when γ is <1. If the variance is too
large, the reliability of the synthesis method can be depreciated.
Table 2 shows the minimum values, maximum values and
standard deviations of the area, power and computation time
obtained over the 10 synthesis runs. The area and power are

TABLE 3. Synthesis time (in s) comparison of CEP_opt and MILP.

App App I App II App III App IV

N 3 2 2 2

MILP 71 280 82 128 Timeout Timeout
CEP_opt 3755 148 571 33 942
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FIGURE 9. Synthesis quality and time comparison.

normalized to their average, and the standard deviation is
obtained for the normalized values. The standard deviations of
the synthesis quality (i.e. area and power) are within 0.10, and
those of the synthesis time are within 0.12 for all the test cases.
These deviations are practically acceptable and it proves the
reliability of the proposed method.

Finally, we examined the effect of N by performing synthesis,
while changing N from 2 to 3. When N = 3 is used, we
manipulated the procedure CEP_rand in Fig. 6 such that the
loop for n = 3 is performed even if a feasible solution has
already been found with n = 2, in order to examine the effect
of searching larger design space. We fixed γ and the number
of iterations to 0.7 and 15, respectively. The result is shown in
Table 1. As aforementioned, no solution was found for App I
when N is 2, while it is found when N is 3. On the other hand,
we could not find the benefit of using stages more than 2 for
the other applications, while the synthesis time is increased by
7.4× (App I) to 19.4× (App II). Therefore, N of 2 is enough
for App II–IV.

In further experiments, we take the values 2, 0.7 and 15 for
the parameters N , γ , and the number of iterations, respectively,
except App I for which N of 3 is used.

5.3. Comparison with the existing methods

In this section, we compare the proposed method with the
existing methods MILP, MIRO and TGE+GEN in terms of the
area of the synthesized network and the elapsed time to perform
the synthesis. The power consumption is not compared here
since MILP and MIRO do not support the power calculation.
However, we believe that the area and time are enough to
compare the efficiency of the synthesis methods.

In order to measure how efficiently our method defines the
design space, we performed the exhaustive search for the design
space defined by setting γ to 1 in our method (CEP_opt)
and compared its synthesis time with that of MILP. Since
both methods find the optimal solution for the given number
of stages, only the synthesis time is compared. The result is
shown in the Table 3. We set the timeout deadline to 24 h.
The result is shown in Table 3. The second row of Table 3

is the maximum number of stages N . The result shows that
MILP finds the solutions only for the first two applications, but
fails to find a solution within the given timeout deadline for the
other applications. Moreover, its synthesis time is huge, 22 h on
average, even for App I and App II. On the other hand, CEP_opt
takes much smaller amount of time than MILP, completing the
search in 2.5 min and 9.4 h for App II and App IV, respectively.
The great time saving is mainly due to the efficiently defined
search space. While the design space of MILP is defined by
the several adjacency matrices where a large portion of design
points yields illegal solutions, any design point in our design
space can be realized into a legal topology.

Next, we compare the synthesis time and the solution quality
of the three heuristic (i.e. not guaranteeing the optimality)
methods, CEP with random increment (CEP_rand), MIRO and
TGE + GEN. The result is shown in Fig. 9.5 First, Fig. 9a
shows the synthesized area of the three methods and the
optimal solution found by CEP_opt. The value for CEP_rand
is the averaged value over 10 runs. The result shows that
CEP_rand gives better solutions than the compared methods.
Specifically, the area is saved by up to 22.6 and 18.3% on
average, over MIRO, and by up to 36.4 and 26.2% on average,
over TGE+GEN. Note that TGE+GEN failed to find a feasible
solution for App I, so it is not counted in calculating the average
improvement ratio. Compared with CEP_opt, CEP_rand shows
up to 14% (App I) and on average 6.8% of quality degradation.
To appreciate the solution quality deviations of 10 runs, we
compared the best and worst cases of CEP_rand with CEP_opt,
which is shown in Fig. 9b. It shows that CEP_rand found the
same solution with CEP_opt for App I and App IV during the
10 runs. Also, the average area of CEP_rand in the best case is
slightly larger (2.6%) than that of CEP_opt. Note that running
the program 10 times takes <2 min for all the applications.

More importantly, CEP_rand outperforms the compared
methods with much less synthesis time as shown in Fig. 9c.
Quantitatively speaking, the speedup of CEP_rand over MIRO
is up to 36.5 and 26.9 on average. Also, the speedup over the
TGE+GEN is up to 104.6 and 38.9 on average.

5We do not compare them for power, since some of the methods compared
do not provide the power optimization.
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6. CONCLUSION

We proposed a novel topology synthesis method and its
efficiency was proved by comparing it with the existing
methods. The strength of our method is attributed to three
factors—a tight design space, a representing method of the
design space and the corresponding exploration method. Even
though many works have been done in the on-chip network
topology synthesis, few works have covered all these three
factors together in a single framework. The proposed design
space definition, CEP in conjunction with ERGF, contains only
the legal solutions, and excludes some trivial solutions such
as topologies having 1 × 1 switch(es). Also, the proposed
exploration method based on ERGF resolves the revisiting
problem which has been a major drawback of many previous
methods. The experimental results indicate that the proposed
method outperforms the compared methods in terms of both
synthesis quality and speed, by showing up to 49.8% and
104.6× of quality and speed improvement, respectively.
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