
: Energy Efficient Synchronization
for Embedded Multicore Systems

Seung Hun Kim, Student Member, IEEE, Sang Hyong Lee, Minje Jun, Member, IEEE,
Byunghoon Lee, Won Woo Ro, Member, IEEE, Eui-Young Chung, Member, IEEE, and

Jean-Luc Gaudiot, Fellow, IEEE

Abstract—Data synchronization amongmultiple cores has been one of the critical issues whichmust be resolved in order to optimize the
parallelism of multicore architectures. Data synchronization schemes can be classified as lock-basedmethods (“pessimistic”) and lock-
free methods (“optimistic”). However, none of these methods consider the nature of embedded systems which have demanding and
sometimes conflicting requirements not only for high performance, but also for low power consumption. As an answer to these problems,
we propose , an energy- and performance-efficient data synchronization method for multicore embedded systems.
achieves balanced energy- and performance-efficiency by combining the advantages of lock-based methods and transactional memory
(TM) approaches; in , the core is blocked only when true conflicts exist (advantage of TM), while avoiding roll-back operations
which can cause huge overhead with regard to both performance and energy (this is an advantage of locks). Also, in order to save more
energy, disables the clocks of the cores which are blocked for the access to the shared data until the shared data become
available. We compared our approach against traditional locks and transactional memory systems and found that can
reduce the energy-delay product by up to 1.94 times and 13.78 times compared to the baseline and TM, respectively.

Index Terms—Data synchronization, multicore, clock, energy, performance

1 INTRODUCTION

MULTICORE processors have become prevalent in mod-
ern computer systems, not only for high performance

desktops or servers but also for mobile devices. In order to
meet the increasingdemands for higher performance, increas-
ingCPU clock frequencywas one of themost obviousmethod
in traditional processors. However, for single cores, this is
turning out to be impractical due to prohibitive power and
heat dissipation requirements [1]. This limitation made the
multicore approach amore viable and scalable solution to the
performance demands of embedded systems. In fact, contem-
porary embedded systems, especially high-endproducts such
as smartphones, are rapidly adopting multicore chips at their
core [2].

However, addingmore cores does not necessarily lead to a
predictable gain in system performance due to the limited
parallelism of real world programs (which was predicted by
Amdahl’s law [3]). There have been tremendous efforts to
reach the theoretical limit of parallelism from many different

perspectives, and data synchronization amongmultiple cores
has been one of the most vexing issues. The data synchroni-
zation issue arises when two or more processors attempt to
access any shared data simultaneously, and mishandling of
these conflicts results in incorrect operations,which is likely to
cause fatal errors.

Existing data synchronization methods are either lock-
based or lock-free. The former includes locks, semaphores,
and barriers; these methods block the accesses to the shared
data from the processors which fail to acquire the permission.
On the other hand, the latter allow all processors to access the
shared data in an optimistic manner, and then perform
rollback and/or re-execution when a conflict occurs. A
well-known technique in this category is that of transactional
memory (TM) [4].

The data synchronization techniques which were original-
ly developed for general purpose systems cannot be trans-
ferreddirectly into the embeddedworld since theydonot take
the nature of embedded systems in sufficient consideration:
these include stringent requirements for low energy con-
sumption as well as high performance. More specifically,
lockbasedmethods arewidely adopted in embedded systems
because of their simple control mechanism, but they sacrifice
muchparallelism, resulting inpoorperformance.On the other
hand, lock-free methods such as TM perform speculative
execution which might turn out to be wasteful of energy
when the execution must be rolled back. In such cases, the
rollback operation consumes additional energy.

In this paper, we propose , an energy- and perfor-
mance-efficient data synchronization method for embedded
systems. delivers TM-like parallelism in race condi-
tions by detecting true data conflicts. The detection is done by

• S.H. Kim, B. Lee,W.W. Ro and E.-Y. Chung are with the School of Electrical
and Electronic Engineering, Yonsei University, Seoul 120-749, Korea.
E-mail: kseunghun@gmail.com, bh2@dtl.yonsei.ac.kr, {wro, eychung}@
yonsei.ac.kr.

• S.H. Lee andM. Jun are with Samsung Electronics, Suwon-si, Gyeonggi-do
443-742, Korea.
E-mail: sh1977.lee@samsung.com, minje.jun@gmail.com.

• J.-L.Gaudiot iswith theDepartment of Electrical Engineering andComputer
Science, University of California, Irvine, CA 92697-2625.
E-mail: gaudiot@uci.edu.

Manuscript received 06 Mar. 2012; revised 12 Mar. 2013; accepted 26 Mar.
2013. Date of publication 07 Apr. 2013; date of current version 15 July 2014.
Recommended for acceptance by S.W. Chung.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.84

1962 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

considering the type, address range, and dependency of
simultaneous accesses. In those cases when true data conflicts
are detected, the cores which are not given permission to
access the data are immediately clock-gated in order to mini-
mize the dynamic power consumption. Since no speculative
execution and rollback are performed, results in a
higher energy efficiency than TM. Also, due to the immediate
clock-gating of cores, can consume less energy than
lock-based methods. All these advantages can be achieved
with simple hardware support andmarginal modifications of
the software, as will be shown throughout the paper.

In the rest of the paper, wewill summarize and discuss the
background and related work in Section 2. Next, we will
present the motivation of in Section 3 and the techni-
cal details and implementations of in Section 4.
Finally, we will evaluate the performance of against
the state of the art baseline and TM in Section 5, followed by a
conclusion of this work in Section 6.

2 RELATED WORKS

The twomost common paradigms in explicitly parallel appli-
cation programming are shared memory and message pass-
ing [5]. Among them, the former is usually used in the context
of single-chipmulticore system, and locks andTMare the two
most prominent methods for such a system. Most of the
existing literatures have evaluated these methods with re-
spect to performance and software programmability. How-
ever, most of them have ignored energy efficiency which is
one of themost important metrics in the context of embedded
systems. In the rest of this section, we will summarize the
previous data synchronizationmethods froma systemenergy
perspective by classifying them into three categories: Lock,
TM, and hybrid scheme.

2.1 Lock-Based Approach
Rajwar et al. proposed twomethods: Speculative Lock Elision
(SLE) [6] is a hardware-based approach which elides the
unnecessary lock-induced serialization from dynamic execu-
tion stream.More specifically, it allowsnon-conflicting critical
sections to be executed and committed concurrently. When
data conflicts occur, the corresponding threads are restarted
to acquire the lock in a serialized manner: Transactional Lock
Removal (TLR) [7] also uses hardware to convert lock-based
critical sections transparently and dynamically into lock-free
optimistic transactions. It resolves the data conflicts based on
the time-stamp in order to provide transactional semantics
and freedom from starvation.

Monchiero et al. [8] proposed a hardware lock that opti-
mizes power and performance by replacing the processors
polling with hardware notification; they used a hardware
block called Synchronization-operation Buffer (SB)which moni-
tors the shared variable and, if it is changed, notifies the
processor of the change so that the processors energy- and
bandwidth consuming polling operation can be avoided. This
improves the performance and power-efficiency of data syn-
chronization by reducing memory overhead. They have ex-
tended thework to reduce the hardware complexity of SB and
to improve the scalability of the proposed architecture [9]. Yu
and Petrov also proposed a hardware synchronization mod-
ule called Distributed Synchronization Controller (DSC) to

reduce the bus contention traffics and achieve high energy
efficiency [10]. Also, it has been mentioned that various
power-down modes including clock-gating technique can be
applied in the proposed DSC.

Some other works proposed energy-aware lock methods.
The thrifty barrier [11] is proposed as a hardware-software
approach to reduce the energy waste in barrier spin-loops by
estimating the wait time and forcing the processor into an
appropriate low-power sleep state. The threads arriving ear-
lier than the thrifty barrier push the target processors in one of
sleep states by predicting the barrier stall time. Also, Liu et al.
[12] achieved somemeasure of power saving by applying the
Dynamic Voltage Frequency Scaling (DVFS). They predicted
the stall time of the barrier which is estimated by simple
predictors based on prior history.

Golubeva et al. [13] evaluated busy-waiting spinlocks,
delay-based spinlocks, and sleep-based spinlocks on the
MPARM simulation framework. They explored several fea-
tures provided by the hardware, and various operating con-
ditions imposed by the software.

Ferri et al. [14] initially proposed a hardware semaphore in
which cores spin on a local scratchpad memory (connected
directly to each core) to reduce the access frequency of the
shared bus. Later, they extended this work to a hybrid (wait/
sleep) semaphore which pushes a processor into a sleep state
only after a fixed number of busy-wait cycles [15]. They also
compared their method to other energy-oriented methods
such as HW-locks (using Test-and-Set instruction), DVS-
policy (with HW-locks), HW-lockssleep, and DVS-sleep. The
proposed timeout-based semaphore provides higher energy
savings (30% on average).

Also, there are efficient software orientedmechanisms that
are based on synchronization primitives such as TEST&SET

and TEST&TEST&SET. Kägi et al. analyzed the overhead of the
synchronization primitives and proposed four mechanisms
that reduce the overhead [16]. They concluded that the
Queue-On-Lock-Bit (QOLB) primitive provides substantial
speedup compared to the other methods. Also, Rajwar et al.
pointed out theprotocol complexity and software overhead of
QOLBand theyproposed Implicit QOLB (IQOLB) to solve the
problems [17].

Even though several lock-based schemes have been pro-
posed, they share the drawback of being overly conservative
in their exploitation of parallelism. More specifically, they
deal with the data synchronization issue at the process-level
by granting a unique identifier to each process. For this
reason, a process cannot simultaneously run on two shared
data elements if it has already requested a lock for one of them.
To counter this problem, an identifier should be given to each
shared data element rather than to a process, at the cost of
dramatically increased programming complexity. The com-
mon issue encountered with conventional explicit synchroni-
zation schemes such as locks, semaphores, mutexes, etc. is
indeed programming complexity. The parallel programs
based on these schemes (an abstraction containing explicit
synchronization)must be aware of its details in order to avoid
races or deadlocks.

2.2 TM Approach
TM provides sufficient programmability to the program-
mers by abstracting the details of the synchronization.

KIM ET AL.: C-LOCK: ENERGY EFFICIENT SYNCHRONIZATION FOR EMBEDDED MULTICORE SYSTEMS 1963

Consequently, the programmers rather focus on the function-
ality. Even though TM simplifies the programming model
and maximizes concurrency, transactions may suffer from
interference which causes them to abort and from heavy
overheads for memory accesses. It should be noted that, in
recent years, there has been increasing interest in both soft-
ware transactional memory (STM) [18], [19] and hardware
transactional memory (HTM) [20]–[22].

Moreshet et al. [23] evaluated the energy cost of managing
memory contention in a multiprocessor environment with a
special emphasis on the conflict scenarioswithin transactions.
They showed that TMhas an advantage over locks in terms of
energy consumption, but that this advantage largely depends
on the architecture of the system, the contention level, and the
conflict resolution policy.

Ferri et al. proposed a hardware TM called Embedded-TM
[24], [25], which aims at balancing energy efficiency and
simplicity in an embedded system. However, the energy
efficiency of TM strongly depends on the accuracy of the
speculation. Indeed, whenever the speculation is wrong, it
consumes non-negligible energy for the associated transac-
tion abort and restart. Sanyal et al. [26] proposed a shutdown
method to tackle this issue; they dynamically turned off a
processor by gating all its clocks, whenever any transaction
running on the processor is aborted. Even though the shut-
down scheme somewhat mitigates the waste of energy when
the speculation is wrong, there is no way to completely
compensate for the energy already consumed by the specula-
tively executed parts.

2.3 Hybrid Approach
There has been a hybrid approach to combine the merits of
lock and TM. Adaptive locks [27] is a hybrid method which
dynamically selects TM or a mutex lock to improve perfor-
mance. However, it only focuses on improving program
execution time; in fact, the energy consumption is not dis-
cussed. That is, the system allows speculative execution that
may cause a power-consuming rollback operation. In addi-
tion, there is no power saving mechanism for the processors
waiting for the execution of a critical section. Also, introduc-
ing adaptive locks requires additional adaptive logic as well
as run-time cost-benefit analysis, which causes additional
overhead.

To summarize, the traditional lock-based schemes are
inadequate from a performance perspective, while TMmeth-
ods are not well designed from an energy perspective. For
these reasons, it is necessary to design a data synchronization
method which exploits the advantages of both methods. In
fact, some methods categorized in the hybrid approach are

actively challenging this issue. Our proposed method
can also be categorized as a hybrid approach.

Compared to the previous works, has a unique
feature; it normally behaves like a lock scheme for energy
efficiency, but it shows a transactional behavior for checking
data conflicts. For further energy saving, it performs clock-
gating during the stalls. Asmentioned in the above paragraph,
the power consumption problem has not been discussed in
the earlier hybrid approaches such as adaptive locks. The
effectiveness of over the other methods will be dis-
cussed in Section 5.

3 MOTIVATIONAL EXAMPLES

In this section, we will emphasize the advantages of
by comparing it to the Lock1 andTM.Weuse a simple piece of
code as an illustrative example (see Fig. 1) to describe the
difference between Lock, TM, and . BEGIN and END at
line 9 and 11 define a critical section in the code. Although the
optimized critical section implementationmaybedifferent for
each synchronization mechanism [28], the example is pre-
sented to show the distinct features of the exclusive approach
and the speculative approach.

3.1 Exclusive Approach and Speculative Approach
First, let us consider the case where the cores are accessing
different data elements as shown in Fig. 2. In this example,
core0, core1, core2, and core3 are simultaneously accessing
the variables A[1], A[2], A[3], and A[4], respectively, via the
function incr. With the Lock method, there is no parallelism
among the operations simply because the critical section in the
function incr is controlled by the same lockId. On the other
hand, the cores execute their operation simultaneously in TM.
Since there is obviously no race condition, no rollback or
re-execution happens.

The second case is shown in Fig. 3 where the cores are
accessing the same data element A[1]. In this case, the opera-
tions are performed sequentially for both Lock and TM, since
there are true conflicts among the cores. However, the main
drawback of TM is in the fact that TM wastes energy for its
speculative execution and consumes additional energy for

Fig. 1. An example code (simple increment).

Fig. 2. Parallel processing with different data.

1. In the rest of the paper, the term Lock refers to the traditional
HW-lock.

1964 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

rollback [shaded box in Fig. 3(b)]. This is an obvious problem
considering the requirement of low power consumption in
embedded systems although the approachmay providemore
parallelism than the lock method as shown in the above
paragraph.

3.2 Required Features
We have presented the drawbacks of the Lock and TM
mechanisms. From the analysis, the ideal operation is the
elimination of speculative execution while exploiting paral-
lelism as much as possible. The proposed system is
developed to achieve this purpose.

As shown in Fig. 2, , the address range is used for
detecting true dependencies so as to decide whether to exe-
cute or hold the operation. Since all the cores are accessing
different variables (i.e., non-overlapped address range),

detects no conflict. Thus their operations can be
performed simultaneously, achieving TM-like parallelism.
Also, the system permits only one access at a time if there
is a true conflict among the cores.Moreover, the coreswithout
access permission move into the clock-gated state to reduce
dynamic power consumption. Consequently, scheme
yields higher energy efficiency than TM and provides higher
performance than Lock.

In fact, lowering the programming complexity is also
important in parallel processing. For example, a fine-grained
locking approach requires a large amount of programming
effort while the method provides more parallelism than a
coarse grained approach. TM has thus been proposed to
provide a convenient programming interface for synchroni-
zation. However, direct transformation of traditional lock-
based critical sections into transactions does not guarantee
correct executionof theprogram [29]. Therefore, theprograms
should be re-designed to be run on TM systems. On the
contrary, conventional lock-based programs can be easily
transformed for execution with the approach since
the proposed scheme prohibits speculative execution. In ad-
dition, prevents deadlockproblem.Themechanism is
described in Section 4.2.1.

4 C-LOCK

In this section, we will describe the concept, implementation,
operation, and usage of . First, we will give a brief

overview of in Section 4.1. The technical details and
implementations of the hardware will be presented
in Section 4.2. Based on the hardware architecture of

, the detailed operation of , which is the
interaction between its software part and the hardware part
will be explained in Section 4.3. At the end of the section, an
example will be given in Section 4.4 which will show the
detailed operation of .

4.1 Overview
The main idea of the system is to exploit available
parallelism with true conflict detection and to minimize
dynamic power consumption with clock-gating for the idle
cores. Fig. 4 shows the concept of the proposed mechanism.
Before the executionof the critical section, every core sends the
address range to be accessed; to in
the figure. After that, the centralized peripheral

decides whether the ranges overlap or not. If there
is an overlap, only one among the cores that cause conflict is
permitted to runwhile the others are stalledwith clock-gating
until the former ends the execution.

The overall architecture of is shown in Fig. 5. Two
major modifications from the traditional lock schemes are
needed to support ; on the hardware side, an addi-
tional peripheral called is added to the

Fig. 4. Concept of mechanism.

Fig. 5. Top-level architecture of .

Fig. 3. Parallel processing with same data.

KIM ET AL.: C-LOCK: ENERGY EFFICIENT SYNCHRONIZATION FOR EMBEDDED MULTICORE SYSTEMS 1965

system. is the key component of
which is in charge of detecting true conflicts among the
accesses to the shared data, and controlling clock-gating of
the cores (Section 4.2).

On the software side, each core is in charge of setting the
necessary information to , which includes
base address, size, and type of the data it intends to access.
When this information is set, the core is allowed to attempt its
atomic operation by notifying .

In the next step, initiates the conflict
detection routine and, in case of a conflict, grants permission
to only one of the cores while gating the other cores which
intend to access the data. Note that multiple cores can get the
permissions if the accesses are not involved in any true
conflict. After the core which has obtained the permission
completes its atomic access, it notifies to
release the permission. This command also triggers

’s conflict detection routine. gives
permission to another core by de-asserting the corresponding
clock-gating signal.

4.2 Implementation
The details of are presented in this subsec-
tion. In the following, we assume that there are cores in the
processor, and that each core can record s with

. refers to a storage that contains infor-
mation for checking true conflicts with the accesses of other
cores. One consists of the following fields:

: base address
: access size
: read/write
: global index for conflict detection

: one bit valid field for indication of the validity of
The internal architecture of is shown in

Fig. 6(a); it is composed of s, busses, a global
counter, an arbiter, and a couple of signals among the s for
the purpose of detecting conflicts (signals for requesting
conflict check to the other s, and for responding to the
requests).

4.2.1 Operation of
We first explain in detail the structure of the handling logic of
the which is the main part of : it con-
sists of entries and conflict checking and clock-gating
logics. The microarchitecture of is shown in Fig. 6(b).
Each initiates the operation by recording the
access information to the corresponding (i.e., in

). This operation is done by calling the func-
tion ADD ITEM, and is a typical bus write operation through a
dedicated bus port () (details are shown later in Sec-
tion 4.3). Each core can register at most s. In our
implementation, the handling logic of manages the
status of the entries by checking the valid fields thus puts
the incoming to an empty entry. Therefore, the program
does not need to identify which entry it is accessing.

During the above procedure, the arbiter can inspect the
possible deadlock. In principle, programmers are responsible
for the correct program execution. In other words, deadlocks
should be avoided at software design time [30]. However, the
proposed system also offers deadlock prevention to
lessen the programming effort. For this operation, we have
assumed that the compiler could provide the lock dependen-
cy graph shown in Fig. 7. In detail, the compiler figures
out whether each C LockId is nested or not using the
BEGIN C LOCK macro at compile time; BEGIN C LOCK is
described in Section 4.3. The analysis result, the dependency
information of each lock, is notified to the arbiter in

before the program is executed. As an
example in Fig. 7, a deadlock may occur if two threads have
different sequences for the nested locks: C LockId 2 and3. The
arbiter is informed of these nested locks; it defines them as a
nested lock group. When the arbiter receives the C LockId

from the request for an atomic operation of the , it allows

Fig. 6. implementation.

Fig. 7. Lock dependency graph.

1966 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

only one C LockId to be acquired by the cores within the
group. For example, if C LockId 2 and 3 are nested as shown
in Fig. 7 and C LockId 2 is already acquired by a given core,
then a request from the with C LockId 3 is denied by
setting to 1 the signal in Fig. 6(b).

An atomic access is triggered when the core sends the
begin command to the corresponding through the bus.
Next, the requests a grant to the conflict checking
operation from the arbiter. This procedure is necessary since
multiple cores can trigger their atomic accesses at the same
time if is connected via multiple buses
(e.g., bus matrix). If the gets the grant, it sets the gIdx

fields of the newly registered entries to the current global
index valueswhich is broadcasted by the global counter. At the
same time, the granted signals the global counter to
increment the global index value.

After that, the broadcasts all the s to the
and requests the other s to check for conflicts

by comparing the broadcasted s and their own registered
s. Immediately after, the conflict checking process is

performed in the other s. The major part of this process
is done by the conflict checker [shown in Fig. 6(b)]. A conflict
checker is dedicated to an entry and checkswhether any
of the broadcasted s causes true conflicts with its own

. As an illustration, imagine that is the to
which the conflict checker is dedicated (stands for local),
and is one of the broadcasted s (stands for
remote). Then, and have true conflicts if the
following conditions are simultaneously present:

Both s are valid
Their address ranges overlap
At least one of them is a write operation
gIdx of is smaller than gIdx of

The first two conditions are obvious, while the third one
filters out the false dependency (i.e., Read-after-Read). The
fourth condition detects possible data hazard; if the fourth
condition holds, it means that the is registered later
than (since global counter is an ascending counter)
and, therefore, executing prior to may cause
data hazard in the requested memory region.

Each conflict checker performs the above operation for all
the broadcasted s and finally produces out the conflict
signal by simply pairwise ORing the results. Again, byORing
all the conflict signals from the conflict checkers, the
finally makes the signal which indicates whether any of the
broadcasted s are in conflict with the s in this .
The signal is OR-gated with the signal to output
the final signal.

After that, the which requested conflict checks from
the other s gathers the results bywatching the
signals in Fig. 6(b). If any of the other s reports conflict, it
means the requested atomic access cannot be executed at this
time, and therefore, the disables the clock of the corre-
sponding core (i.e., deasserts the signal).Also, the

signals are stored in the register
so that the can watch the events of the blocking s
being cleared and reattempt its access. This can effectively
avoid the blocked s watching the activities from all the
other cores. When no conflicts are reported from the other

s, the core keeps running and executes the atomic access
for the registered s.

As shown in Fig. 6(b), each has its own s and the
number of s is fixed as in the proposed scheme.
Therefore, if the number of requested s to be registered
is larger than , some addresses cannot be registered. To
solve this problem, is designed to send the
signal to the arbiter if there is no empty space for the .
Then, the arbiter sends the signal back to the core
for synchronization. In details, if any of the core is executing a
critical section, the arbiter sets the signal to 1 to
stall the execution of the core which issues signal. If
not, the arbiter permits the core to execute the critical section.

Also, the proposed design reduces the complexity of the
interconnections in the s and the arbiter. As shown in
Fig. 6(b), the conflict checker is dedicated for each .
Therefore, additional control is not required for address
comparison. For example, if the s are shared among the

s, many multiplexers are needed to connect the all s
with the conflict checker and the arbiter should decide the
connection for every grant operation.

When the core completes its atomic access, it asks
to clear the corresponding entries by

calling the function END C LOCKwhich effectively sends out
an end control command to the corresponding (details
are described later in Section 4.3). When the clears the

entries, it also notifies the other s that its previous
atomic access has been completed. If there is any other
which was blocked by this , it would reattempt its access
first by requesting the grant from the arbiter.

4.2.2 Overhead Analysis
Depending on the width of the various fields in and the
width of the system bus, setting the entry in

can vary from one to many bus clock cycles. If the
data length of an is (excluding valid field because it is
automatically set and reset by), the number
of s to be registered is , and the bus width is , the
number of cycles needed for a core to transfer the s to

is simply . In our implementa-
tion, we assume that setting one (including ,

, and fields) is done in two clock cycles. When the
begin command is received, the arbitration takes one cycle
and, if the is granted access, setting the gIdx field is
performed within the same cycle. Issuing the conflict check
request and broadcasting s occurs at the next cycle,while
the conflict check process is done in the other s at the
following cycle. Finally, at the next cycle, the can deter-
mine whether to gate the clock of the core or not according to
the conflict check results. In total, at least six cycles are
required from the moment when the core begins setting

to the moment when the gating of the clock is decided.
The cycle count may increase if the was not granted
access from the arbiter or the core attempts to set multiple

s for the atomic access.
We implemented with Verilog HDL, to

analyze the hardware overhead of the proposed scheme.
We performed a topographical synthesis with Synopsys
Design Compiler and performed static timing and power
analysis with Synopsys PrimeTime.2 Synopsys 90 nm logical

2. available at www.synopsys.com

KIM ET AL.: C-LOCK: ENERGY EFFICIENT SYNCHRONIZATION FOR EMBEDDED MULTICORE SYSTEMS 1967

and physical technology libraries were used in the implemen-
tation.We implemented various versions of
considering the following conditions; the type aiming at high
speed (750 MHz), and the other at optimizing for area and
power for a 200 MHz clock frequency (200 MHz is the bus
clock speed used in our experiments).

The results show the area overhead and power consump-
tion of for the various combinations of the
number of cores (N) and the number of entries (M). As
shown in Fig. 8(a), the required area is proportional to the
number of cores and entries. The main factor of the increased
area is the number of registers for the in the Pool. For this
reason, some significant large amounts of leakage power are
caused compared to the designs with higher frequency as
shown in Fig. 8(b) and (c). On the contrary, the designs with
lower frequency that are shown as continuous line, are less
affected from the increase area. Consequently, the later

designs are more practical. Above all, the increasing ratio of
the power consumption over the number of s is remark-
ably small compared to the designs with higher frequency.
From the results shown in Fig. 8, the design with lower
frequency operate at the same clock frequency as the bus (in
our experiments), while the power consumption is less than
oneninth and the area is 25%smaller in average for 16 kinds of
implementations.

In addition, supporting out-of-order execution may com-
plicate the implementation and management of ; the
back-end of the core (re-order buffer (ROB) and components
for handling commit) should not be clock-gated until the ROB
entries which are being committed are finally committed.
Therefore, to support out-of-order execution, modifications
are needed in such that it can separately
control the clocks of the frond-end part and the back-end part
of each core.

4.3 Software-Hardware Interaction
In order to take advantage of , the software is in
charge of setting the information for the atomic access as well
as triggering and clearing operations. These tasks can be
handled simply by writing the commands to the to
which the core is dedicated, via the corresponding port in

.Note that the base addresses of the ports are
determined at the system level so that they can be easily
calculatedwith the coreIds. Consequently, from the perspec-
tive of the system software, the atomic accesses can be per-
formed by setting the registers visible by the system software
shown in Table 1, with the macro functions shown in Fig. 9.
A simple code of the macros is displayed in Fig. 9. Also, it
should be noted that an advanced Integrated Development
Environment tool can be developed to provide information
for the macro functions to lessen the burden of the software

Fig. 8. Area and power consumptions of various im-
plementations in 90 nm process technology.

TABLE 1
in

Fig. 9. Macros for .

1968 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

programmer. For example, a list of available C LockIds or
the access history (read/write) of shared variables can be
informed to the programmer.

Now that the roles and implementations of hardware and
software are described, we can explain the interaction be-
tween software and hardware in (Fig. 10). Note that
only two cores are used in thefigure for simplicity, but that the
number of processors can be easily extended. An atomic
access in is initiated when the system software calls
the function ADD ITEM to register the information of the atomic
access ([]). This step is initiated from the hardware side, i.e.,
by , when the corresponding success-
fully registers the incoming information to its entry
([]). After that, the system software starts the
operation by setting the begin command at the regCtrl

register, i.e., by calling the function BEGIN C LOCK, []. The
function notifies current coreId and C LockId to

. From BEGIN C LOCK call, deter-
mineswhether to let the core proceedwith its atomic access or
to stop the core until the conflict is resolved, as described in
Section 4.2 ([] to []). That is, the function call triggers the
request for the critical section access. Also, the triggering
should be separated from the registration since the
proposed scheme allows multiple calls of the ADD ITEM func-
tion before the execution of a critical section. If

detects no conflict for the access request, the core
proceedswith its taskswith the shared data ([]). Otherwise,
the core is set to the clock-gated state by
([]), while the corresponding waits for the other cores
which have blocked its associated core to complete their
accesses ([]).

The address comparison scheme of the proposed
method is not appropriate to detect a conflict of nondeter-
ministic memory access or dynamic allocation in the critical
section. In this case, the critical section should be exclusively
executed. For that purpose, the programmer needs to specify
the mutual exclusion by setting the constant value in the
arguments of the ADD ITEM function. A line of code such as
ADD ITEM (coreId 1 1 bWRITE) can achieve a mutually exclu-
sive operation for nondeterministicmemory access or dynam-
ic allocation. As a future work, we will investigate more
elaborated mechanism to solve this limitation.

When the atomic access is finished, the system software
notifies to invalidate the corresponding

entries by calling the function END C LOCK ([]). The
function END C LOCK not only clears the entries in

([]), but also notifies the other s
that the shared region has been released ([]). Then, the

s which have been waiting for this event go back to
arbitration to check for conflicts, and the procedure repeats
from [].

4.4 An Example of Operation
In this subsection, we will explain the operation of
with a detailed example (see Fig. 11). It is assumed that there
are four cores () and that each core can register more
than two s. The rows labeled “Core” show the action of
the software (“Software”), the operational status (“Status”),
and the clock activity (“Clock”) of the cores at each time slot.

At , , and record the s to the
s and request their atomic accesses (continues

performing its local operations). Since the address range
requests do not overlapwith others, it is granted access

(area labeled “G”) and initiate its atomic operation (foo)
without its clock being gated. Also, and receive
the grant for the operations (bar) since there is only a false
dependency between them, i.e., both are read operations.

At , requests an atomic operationwith C LockId

6. Since we have assumed that all entries are empty
before , the request can be granted if the system
considers only the registered s at . However, as de-
scribed in Section 4.2.1, nested lock is informed to the arbiter.
Therefore, the request of at C LockId 6 is denied since
C LockId 5 is already acquired by . As a result, the
status of is changed to Idle. If there is no consideration
for the nested lock, the request of Core3 at will be granted
and the status of will be changed to idle at due to the
overlapped address. In this case, a deadlock may happen if

requests an atomic operation at as the gray colored
text indicates; a conflict occurs due to the s registered by

at . Also at , releases its ownership of the
address range 304-308 (area labeled “R”).

At , requests the atomic access in a nested manner
and it is granted since there is no overlapped address. How-
ever, is denied (area labeled “D”) since the request has a
true data conflict with the atomic access being held by .
As completes its atomic operation and releases its all
ownership of inner nest and outter nest at and ,

performs an arbitration again and grant
access to by enabling the clock.

5 EXPERIMENTS

In this section we evaluate our proposed method
using several benchmark applications. We first describe the
experimental setup, followed by a detailed discussion of the
results.

5.1 Experimental Settings
In our experiments, the baseline system is implemented as a
clock-gating applied SB [8] method considering the power-
saving approach of Yu and Petrov [10] which is mentioned in

Fig. 10. Software-hardware interaction of operation.

KIM ET AL.: C-LOCK: ENERGY EFFICIENT SYNCHRONIZATION FOR EMBEDDED MULTICORE SYSTEMS 1969

Section 2; the processors that are registered in SB are clock-
gated. By presenting performance comparison to the baseline
system,wewill show that the advantage of is not only
from the clock-gating but also from the synchronization
mechanism. Also, we evaluated against the transac-
tional memory systems shown in [14]. Since the balance
between throughput and energy is critical for embedded
systems, we selected the energy-delay product (EDP) as the
performance metric.

We implemented the proposed and the baseline
system onto the MPARM simulation framework, presented
by Benini et at. [31]. MPARM is a cycle-accurate virtual
platform written in SystemC, which consists of processors,
interconnect, memories, and peripherals. With its cycle-
accurate power models, it provides much useful information,
such as the total number of cycles, system energy consump-
tion, abort rate, etc. When measuring the execution clock
cycles and energy consumption, we used static task mapping
for the benchmark programs to concentrate on the data
synchronization while avoiding the influence of any other
factors. Specifically, each task is mapped on its own pro-
cessor hence there is no overhead for task switching or task
migration [14].

The simulation platform used in the experiments is com-
posed of:

a configurable number of ARM cores with own caches,
a main memory,
snoop devices,
an interconnection [14], and
a with the clock-gating feature for
synchronization.

The benchmark applications are chosen from the STAMP
benchmark suite [33], the MiBench suite [34], thread schedul-
ing model (TSM) in [32], and microbenchmarks for MPARM.
They are summarized in Table 2. The portion of the time spent
in the critical section is shown as a percentage. In the case of
the matrix benchmarks and thread scheduling model, the
portion of time can be varied.

In fact, the numbers next to ‘C’ stand for the percentile ratio
of the time spent in the critical section to the total execution
time in the matrix benchmarks. The program consists of a
sequence of atomic operations executed on a shared matrix,

logically subdivided into overlapping regions. To guarantee
that concurrent accesses to overlapping regions do not con-
flict, processors should obtain an exclusive access to each
region.

The other benchmarks represent more complex applica-
tions than the matrix benchmarks. The patricia program
executes a prefix matching of IP addresses for network ap-
plications. TheparallelizedMPARMversion of theprogram is
presented in Ferri et al.’s work [25]. The labyrinth is a
program which finds the shortest paths between pairs of
starting and ending points in a 3D maze. Both programs
include the critical sections that are implemented using a
coarse-grained scheme. We have chosen the programs so as
to show the effectiveness of exploiting parallelism versus
Lock and eliminations of the speculative execution versus
TM. The kmeans benchmark is a partitioning program where
the objects to bepartitioned are equally subdividedamong the
threads. Vacation emulates a non-distributed travel reserva-
tion system. Each thread tries to access a central database
system which keeps a record for available plane tickets or
available hotel rooms using a transaction manager. In addi-
tion to the traditional benchmarkprograms,wehavemodeled
the thread scheduling algorithm in Arora et al. [32]. The
algorithm is based on a work-stealing [35] method using a
deque structure. Each thread interacts with the work queues
of other threads when there is no work stored in its own

Fig. 11. Description of process.

TABLE 2
The Benchmark Applications

1970 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

queue. The programs are modeled as two cases; the suffixes
(low and high) indicate the probability of having conflicts
during the work-stealing process.

5.2 Experimental Results
5.2.1 Results for the Matrix Benchmarks
The effectiveness of the proposed scheme is in exploiting
available parallelism with low power consumption. In
detail, prevents unnecessary exclusive execution
using the access address range comparison and the system
does not perform a power-wasting speculative execution.
Also, the clock-gating feature reduces the dynamic power
of the cores that are not granted for a critical section
access. The following simulation results will show these
advantages.

We first present the experimental results for the matrix
benchmarks. Fig. 12 shows the results using various numbers
of cores (2, 4, and 8) for the three metrics: execution cycles,
energy, and EDP. Note that the values are normalized to the
baseline system with 1 core and 1 is subtracted from it. With
this data presentation, a negative value can be simply inter-
preted as ‘improved’ and a positive value as ‘degraded.’ The
length of the bar indicates how much the metric is improved
or degraded. Also, note that the results with single core are
omitted since they are identical for all the three methods; the
reason is that we use static taskmapping to each core without
multi-threading within the core.

Let us first discuss the execution cycles. For C5 and C20, all
the three methods the baseline, TM, and show
almost the same results. This is because the portion of critical
section is not large enough to show a noticeable difference
among the three methods even when 8 cores are used. How-
ever, given a large enough critical section, the gapbetween the
three methods becomes more prominent, as shown for C60
and C85. The baseline system shows the poorest performance
scaling as the number of cores increases, since it blocks core(s)
whenever more than one cores attempt to access thememory,
even though their accesses does not cause conflicts. TMshows
better performance scaling than the baseline but not as good
as . Even though both TM and check true
conflicts for their atomic access, the result demonstrates that
the conflict checking and blocking mechanism of is
superior to the speculative execution and abort mechanism
of TM.

As for the energy consumption, TM shows the worst
characteristics due to its aborted execution overhead; for
example, TM consumes 1.6 times more energy compared to

in C85. The baseline system and show almost
same results in energy consumption since clock-gating fea-
tures are applied in both systems. The clock of a core is
stopped when the processor is registered in the SB entry or
there is any data conflict. The systems automatically resume
the clock when the execution of the previously registered
processor is finished or the data access is granted.

Although the baseline system achieves less energy con-
sumption similar to , the system shows poor EDP due
to the long execution delay. The EDP results of the three
methods are shown at the bottom of Fig. 12. The results show
that the advantage of becomesmore prominent as the
portion of critical section increases. shows 86% of

EDP reduction in case of 8-cores with C85whereas TM shows
66% and the baseline results in 16%.

The effectiveness of the proposed method is also
noticeable as the number of cores increases. As shown in
Fig. 12, EDP reduction of as the number of cores
increase 2 to 8 is 36% in c85 while the value of the baseline is

and TM is 32%.

5.2.2 Results for Complex Benchmarks
In this subsection, we evaluate with more complex
applications: patricia and labyrinth. The results are shown
in Fig. 13, and the values are calculated in the same way as
Fig. 12.

As shown in the figure, provides energy- and
performance-efficient execution of the applications in most
of the cases compared to the baseline system and TM. On
average, the proposed method shows 20% and 41%
more performance improvement than the baseline and TM
respectively. Especially, remarkable improvements are
achieved in patricia labyrinth, and scheduling high as
demonstrated by the following results; as the number of cores
increases from 1 to 12, the maximum performance improve-
ment of the baseline is 7% in patricia, 1% in labyrinth, and
4% in scheduling high. On the other hand, the performance
of is gradually improved byup to 51%, 62%, and 21%,
respectively.

In the case of patricia and labyrinth, TM shows better
performance than the baseline, but the gain is much lower
than , even though it also guarantees data consistency.
In addition, severe performance degradation is occurred in
scheduling high while the method reduces the
program execution cycles. Such a big difference between TM
and comes from how and when these two methods
use the true dependence checking feature; uses the
feature before entering the critical section, and blocks and
clock-gates the core(s) other than the granted one until the

Fig. 12. Comparison results for the matrix benchmarks, using 2, 4, and 8
cores. The valuesare normalized to the results of the baseline systemwith
1 core, and substracted by 1.

KIM ET AL.: C-LOCK: ENERGY EFFICIENT SYNCHRONIZATION FOR EMBEDDED MULTICORE SYSTEMS 1971

data conflict is resolved. Therefore, if a core is blocked and
clock-gated, it neverwakes up and attempts access again until
the access to the shared data finally becomes available. On the
other hand, TM speculatively enters a critical section and, if a
conflict is detected, aborts the execution and tries again and
again until the execution of the critical section ends without
any conflict.

There is a possibility that the critical section is executed
numerous times due to frequent aborts in TM; it might cause
overall performance degradation. In the case of kmeans, the
performance improvement in execution time as the number of
cores increases is smallest in TMamong three synchronization
methods even though the application has outstanding scal-
ability. We believe this is due to the frequent aborts in the
application. As a matter of fact, the result of 12-cores case is
worse than 8-coreswhile the other two approaches do not; the
amount of the improvement in 12-cores with kmeans is 75%
whereas the values of the baseline is 74%andTM is 64%.Also,
TM shows the worst result in execution time with vacation.

The performance improvement of the baseline and is
12% while TM is 3% in 12-cores case.

In addition, shows better results in
scheduling low compared to the baseline and TM.Although
the baseline system has advantages over TM due to the
exclusive operation, the amount of performance improve-
ment is smaller than since the system does not fully
exploit parallelism. The negative effect of this limitation
gets worse as the portion of the critical section increases. As
shown in the execution cycles of scheduling low and
scheduling low, the advantage of parallel processing in the
baseline considerably decreases compared to as the
amount of time spent in the critical section increases. For
example, the performance improvement in scheduling low

is 45% and scheduling high is 0.2% using 12-cores with the
baseline model. On the other hand, the values of are
53% and 20%, respectively.

As for the energy consumption, the TM scheme shows the
worst results among three approaches due to the rollback

Fig. 13. Comparison results for the applications, using 2, 4, 8, and 12 cores.

Fig. 14. Abort rate(TM) / gate rate() of complex applications as cores.

1972 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

operations even though the program execution time is re-
duced. Themain reason of this inefficiency is shown in Fig. 14.
As shown in the figure, the abort rate of TM is much higher
than the gate-rate3 of for patricia labyrinth, and
scheduling high. Especially in labyrinth, compared to the
dramatic increase in the abort rate of TM as the number of
cores increases, the gate-rate is kept relatively constant. Con-
sequently, the advantage of is shownprominently for
labyrinth and scheduling high. can reduce the
energy consumption by 2.16 times in labyrinth and 4.02
times in scheduling high compared to TM, respectively.

6 CONCLUSION

is an energy- and performance-efficient data synchro-
nizationmethod formulticore embedded systems. can
save system energy by gating clocks of some cores which
request shared data but are blocked since the data are being
occupied by another core(s). In order to minimize the perfor-
mance loss due to conflict (stall, thereby), checks the
truedependencies among the cores by examining their address
range, access type, and so on, unlike the traditional lock. These
properties of combine the advantages of locks andTM
and offer the most efficiency; the experiments show that

can reduce EDP by a multiplicative factor up to
1.94 compared to the baseline and 13.78 compared to TM.
These resultsdemonstrate that theproposed approach
can provide a power efficient memory consistencymodel. The
proposed scheme may require significant work from the pro-
grammer; this can be regarded as a trade-off of the improved
performance including power efficiency. On the other hand,
the hardware area overheadand the power and execution time
overhead of the proposed approach are not significant. The
high efficiencyof reliesmostlyon the special hardware

, with marginal support from the software.
In the near future, we plan to extend by adding

out-of-order core support and examining it for more bench-
marks.Also, although themodification neededon the software
side is marginal, we plan to develop a compiler assistance
for so that themanualmodificationon the softwarecan
be more reduced.

ACKNOWLEDGMENT

This work is partly supported by the National Science Foun-
dation under Grant CCF-1065448, by the Basic Science Re-
search Program through theNational Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (MEST) (2009-0077326, 2010-0013202, and
2010-0025423), by the Visiting Professors Program through
NRF funded by the MEST (2012S1A2A1A01031420), and by
the Mid-career Researcher Program through NRF grant
funded by the MEST (2010-0026822). Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
views of the Foundations.

REFERENCES

[1] D. Geer, “Chip makers turn to multicore processors,” Computer,
vol. 38, no. 5, pp. 11–13, May 2005.

[2] M. Levy and T. Conte, “Embedded multicore processors and
systems,” IEEE Micro, vol. 29, no. 3, pp. 7–9, May/Jun. 2009.

[3] M. Hill and M. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008.

[4] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. 20th Int. Symp.
Comput. Archit., 1993, pp. 289–300.

[5] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, and
G. Nicolescu, “Parallel programming models for a multi-processor
SoC platform applied to high-speed traffic management,” in Proc.
2nd IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codesign Syst. Synthe-
sis (CODES+ISSS’04), 2004, pp. 48–53.

[6] R. Rajwar and J. Goodman, “Speculative lock elision: Enabling
highly concurrent multithreaded execution,” in Proc. 34th Annu.
ACM/IEEE Int. Symp. Microarchit., 2001, pp. 294–305.

[7] R. Rajwar and J. Goodman, “Transactional lock-free execution of
lock-based programs,” in Proc. 10th Int. Conf. Archit. Support Pro-
gram. Languages Oper. Syst., 2002, pp. 5–17.

[8] M.Monchiero, G. Palermo, C. Silvano, andO. Villa, “Power/perfor-
mance hardware optimization for synchronization intensive appli-
cations inMPSOCs,” inProc.Des.Autom.TestEur., 2006,pp. 606–611.

[9] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Efficient syn-
chronization for embedded on-chip multiprocessors,” IEEE Trans.
VeryLargeScale Integr. (VLSI) Syst., vol. 14, no. 10,pp. 1049–1062, 2006.

[10] C. Yu and P. Petrov, “Distributed and low-power synchronization
architecture for embeddedmultiprocessors,” inProc. 6th IEEE/ACM/
IFIP Int.Conf.Hardware/Softw.CodesignSyst. Synthesis, 2008, pp. 73–78.

[11] J. Li, J. F. Martinez, and M. C. Huang, “The thrifty barrier: Energy-
aware synchronization in shared-memorymultiprocessors,” inProc.
IEEE Int. Symp.High-Perform.Comput.Archit., 2004, vol. 10, pp. 14–23.

[12] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin,
“Exploiting barriers to optimize power consumption of CMPs,” in
Proc. 19th IEEE Int. Symp. Parallel Distrib. Process., 2005, p. 5.

[13] O.Golubeva,M.Loghi, andM.Poncino, “On the energy efficiencyof
synchronization primitives for shared-memory single-chip multi-
processors,” inProc. ACMGreat Lakes Symp.VLSI, 2007, pp. 489–492.

[14] C. Ferri, A. Viescas, T. Moreshet, R. Bahar, andM. Herlihy, “Energy
efficient synchronization techniques for embedded architectures,”
in Proc. 18th ACM Great Lakes Symp. VLSI, 2008, pp. 435–440.

[15] C. Ferri, R. Bahar, M. Loghi, and M. Poncino, “Energy-optimal
synchronization primitives for single-chip multi-processors,” in
Proc. 19th ACM Great Lakes Symp. VLSI, 2009, pp. 141–144.

[16] A. Kägi, D. Burger, and J. R. Goodman, “Efficient synchronization:
Let them eat QOLB,” in Proc. 24th Int. Symp. Comput. Archit., 1997,
pp. 170–180.

[17] R. Rajwar, A. Kagi, and J. Goodman, “Improving the throughput of
synchronization by insertion of delays,” in Proc. 6th Int. Symp. High-
Perform. Comput. Archit., 2000, pp. 168–179.

[18] N. Shavit andD. Touitou, “Software transactionalmemory,” inProc.
14th Symp. Principles Distrib. Comput., 1995, pp. 204–213.

[19] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer III, “Software
transactional memory for dynamic-sized data structures,” in Proc.
22nd Symp. Principles Distrib. Comput., 2003, pp. 92–101.

[20] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,
B. Hertzberg,M. Prabhu,H.Wijaya, C. Kozyrakis, andK. Olukotun,
“Transactional memory coherence and consistency,” ACM
SIGARCH Comput. Archit. News, vol. 32, no. 2, 2004, p. 102.

[21] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie,
“Unbounded transactional memory,” in Proc. 11th Int. Symp. High-
Perform. Comput. Archit., 2005, pp. 316–327.

[22] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood, “LogTM:
Log-based transactional memory,” in Proc. 12th Int. Symp. High-
Perform. Comput. Archit., 2006, pp. 254–265.

[23] T. Moreshet, R. I. Bahar, and M. Herlihy, “Energy reduction in
multiprocessor systems using transactional memory,” in Proc. Int.
Symp. Low Power Electron. Des., 2005, pp. 331–334.

[24] C. Ferri, T. Moreshet, R. Bahar, L. Benini, and M. Herlihy,
“A hardware/software framework for supporting transactional
memory in aMPSoCenvironment,”ACMSIGARCHComput. Archit.
News, vol. 35, no. 1, pp. 47–54, 2007.

[25] C. Ferri, S. Wood, T. Moreshet, R. I. Bahar, and M. Herlihy,
“Embedded-tm: Energy and complexity-effective hardware trans-
actional memory for embedded multicore systems,” J. Parallel
Distrib. Comput., vol. 70, no. 10, pp. 1042–1052, 2010.

3. , where represents how many times the core is
clock-gated and represents howmany times the core enters the
critical section.

KIM ET AL.: C-LOCK: ENERGY EFFICIENT SYNCHRONIZATION FOR EMBEDDED MULTICORE SYSTEMS 1973

[26] S. Sanyal, S. Roy, A. Cristal, O. S. Unsal, andM. Valero, “Clock gate
on abort: Towards energy-efficient hardware transactional memo-
ry,” in Proc. IEEE Int. Symp. Parallel Distrib. Process., 2009, pp. 1–8.

[27] T.Usui, R. Behrends, J. Evans, andY. Smaragdakis, “Adaptive locks:
Combining transactions and locks for efficient concurrency,”
J. Parallel Distrib. Comput., vol. 70, no. 10, pp. 1009–1023, 2010.

[28] B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. C. Minh,
L. Hammond, C. Kozyrakis, and K. Olukotun, “Executing Java
programs with transactional memory,” Sci. Comput. Programm.,
vol. 63, no. 2, pp. 111–129, 2006.

[29] M. Martin, C. Blundell, and E. Lewis, “Subtleties of transactional
memory atomicity semantics,” IEEE Comput. Archit. Lett., vol. 5,
no. 2, pp. 17–20, Jul.–Dec. 2006.

[30] S. Akhter and J. Roberts,Multi-Core Programming. Intel Press, Intel
Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR 97124-
5961, 2006.

[31] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
“Mparm: Exploring the Multi-Processor SoC Design Space with
SystemC,” J. VLSI Signal Process., vol. 41, no. 2, pp. 169–182, 2005.

[32] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” in Proc. 10th ACM Symp.
Parallel Algorithms Archit., 1998, pp. 119–129.

[33] C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in Proc.
IEEE Int. Symp. Workload Char., 2008, pp. 35–46.

[34] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embed-
ded benchmark suite,” in Proc. IEEE Int. Workshop Workload Char.,
2001, pp. 3–14.

[35] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-
putations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999.

SeungHunKim received theBSandMSdegrees
in electrical and electronic engineering from
Yonsei University, Seoul, Korea, in 2009 and
2011, respectively. He is currently PhD student
in Embedded Systems and Computer Architec-
ture Laboratory, School of Electrical and Elec-
tronic Engineering, Yonsei University. His re-
search interests include the transactional memory
systems and multi-core architecture.

Sang Hyong Lee received the BS and MS
degrees in electrical and electronic engineering
from Yonsei University, Seoul, Korea, in 2003 and
2012, respectively. He is currentlya senior engineer
with Samsung Electronics, Suwon, Korea. His re-
search interests includesytem-on-chiparchitecture.

Minje Jun (M’08) received the BS, MS, and PhD
degrees in electrical and electronic engineering
from Yonsei University, Seoul, Korea, in 2006,
2008, and 2013, respectively. He is now with
System LSI Division, Semiconductor Business,
Samsung Electronics. His research interests in-
clude network-on-chip and DRAM-stacked SoC
architectures with the special emphasis on their
design automation.

Byunghoon Lee received the BS degree in elec-
trical and electronic engineering from Yonsei
University, Seoul, Korea, in 2010, where he is
currently working toward the PhD degree in elec-
trical and electronic engineering. His research
interests include low power design and memory
architecture.

WonWooRo received the BSdegree in electrical
engineering fromYonseiUniversity,Seoul, Korea,
in 1996, and theMS and PhD degrees in electrical
engineering from the University of Southern
California, Los Angeles, in 1999 and 2004,
respectively. He worked as a research scientist
in the Electrical Engineering and Computer Sci-
ence Department, University of California, Irvine.
He currently works as an associate professor with
the School of Electrical and Electronic Engineer-
ing, Yonsei University, Seoul, Korea. Prior to

joining Yonsei University, he has worked as an assistant professor in the
Department of Electrical and Computer Engineering, California State
University, Northridge. His industry experience also includes a college
internship at Apple Computer, Inc., and a contract software engineer in
ARM, Inc. His current research interests include high-performancemicro-
processor design, compiler optimization, and embedded system designs.

Eui-Young Chung (SM’99–M’06) received the
BS and MS degrees in electronics and computer
engineering from Korea University, Seoul, Korea,
in 1988 and 1990, respectively, and the PhD
degree in electrical engineering from Stanford
University, Stanford, CA, in 2002. From 1990 to
2005, he was a principal engineer with SoC R&D
Center, Samsung Electronics, Yongin, Korea. He
is currently a professor with the School of Electri-
cal andElectronicEngineering, YonseiUniversity,
Seoul. His research interests include system

architecture and VLSI design, including all aspects of computer-aided
design with the special emphasis on low-power applications and flash
memory applications.

Jean-LucGaudiot received theDiplôme d’Ingén-
ieur from the École Supérieure d’Ingénieurs en
Electrotechnique et Electronique, Paris, France,
in 1976, and theMSandPhDdegrees in computer
science from the University of California, Los
Angeles, in 1977 and 1982, respectively. He is
currently a professor and chair of the Electrical
and Computer Engineering Department, the Uni-
versity of California, Irvine. Prior to joining UCI in
January 2002, he was a professor of electrical
engineering with the University of Southern

California since 1982, where he served as director of the Computer
Engineering Division for 3 years. He has also done microprocessor
systems design at Teledyne Controls, Santa Monica, California, in
1979–1980, and research in innovative architectures at the TRW Tech-
nology Research Center, El Segundo, California, in 1980–1982. He
consults for a number of companies involved in the design of high-
performance computer architectures. His research interests include
multithreaded architectures, fault-tolerant multi-processors, and imple-
mentation of reconfigurable architectures. He has published over 200
journal and conferencepapers.His researchhasbeensponsoredbyNSF,
DoE, and DARPA, as well as a number of industrial organizations. In
January 2006, he became the first editor-in-chief of IEEE Computer
Architecture Letters, a new publication of the IEEE Computer Society,
which he helped found to the end of facilitating short, fast turnaround of
fundamental ideas in the Computer Architecture domain. From 1999 to
2002, he was the editor-in-chief of the IEEE Transactions on Computers.
In June 2001, he was elected chair of the IEEE Technical Committee on
Computer Architecture, and re-elected in June 2003 for a second 2-year
term. He is a member of the ACM and of the ACMSIGARCH. He has also
chaired the IFIP Working Group 10.3 (Concurrent Systems). He is one of
three founders of PACT, the ACM/IEEE/IFIP Conference on Parallel
Architectures andCompilationTechniques, andservedas its first program
chair in 1993, and again in 1995. He has also served as program chair of
the 1993 Symposium on Parallel and Distributed Processing, HPCA-5
(1999HighPerformanceComputer Architecture), the 16th Symposiumon
Computer Architecture andHighPerformanceComputing, Foz do Iguacu,
Brazil, the 2004 ACM International Conference on Computing Frontiers,
and the 2005 International Parallel and Distributed Processing Sympo-
sium. He was elevated to the rank of AAAS Fellow in 2007.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1974 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014

